| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 | 2 1 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) | 
						
							| 4 |  | absval |  |-  ( ( A ., B ) e. CC -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( abs ` ( A ., B ) ) ^ 2 ) = ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) ) | 
						
							| 7 | 3 | cjcld |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) e. CC ) | 
						
							| 8 | 3 7 | mulcld |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) e. CC ) | 
						
							| 9 | 8 | sqsqrtd |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) = ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) | 
						
							| 10 | 1 2 | cphipcj |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) = ( ( A ., B ) x. ( B ., A ) ) ) | 
						
							| 12 | 6 9 11 | 3eqtrrd |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( B ., A ) ) = ( ( abs ` ( A ., B ) ) ^ 2 ) ) |