| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
4
|
clmcj |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 |
7
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) ) |
| 9 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 10 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
4 1 2 10
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 12 |
9 11
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 13 |
8 12
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |