Metamath Proof Explorer


Theorem cphipcj

Description: Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
Assertion cphipcj ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
4 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
5 4 clmcj ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
6 3 5 syl ( 𝑊 ∈ ℂPreHil → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
7 6 3ad2ant1 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
8 7 fveq1d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) )
9 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
10 eqid ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) )
11 4 1 2 10 ipcj ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) )
12 9 11 syl3an1 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) )
13 8 12 eqtrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) )