| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
| 2 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 4 |
2 3
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 5 |
2 3
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) |
| 6 |
2 3
|
isclm |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 7 |
1 4 5 6
|
syl3anbrc |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |