Step |
Hyp |
Ref |
Expression |
1 |
|
cphlmod |
β’ ( π β βPreHil β π β LMod ) |
2 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
3 |
|
eqid |
β’ ( Base β ( Scalar β π ) ) = ( Base β ( Scalar β π ) ) |
4 |
2 3
|
cphsca |
β’ ( π β βPreHil β ( Scalar β π ) = ( βfld βΎs ( Base β ( Scalar β π ) ) ) ) |
5 |
2 3
|
cphsubrg |
β’ ( π β βPreHil β ( Base β ( Scalar β π ) ) β ( SubRing β βfld ) ) |
6 |
2 3
|
isclm |
β’ ( π β βMod β ( π β LMod β§ ( Scalar β π ) = ( βfld βΎs ( Base β ( Scalar β π ) ) ) β§ ( Base β ( Scalar β π ) ) β ( SubRing β βfld ) ) ) |
7 |
1 4 5 6
|
syl3anbrc |
β’ ( π β βPreHil β π β βMod ) |