| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphnmvs.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cphnmvs.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | cphnmvs.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | cphnmvs.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | cphnmvs.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | cphnlm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmMod ) | 
						
							| 7 |  | eqid | ⊢ ( norm ‘ 𝐹 )  =  ( norm ‘ 𝐹 ) | 
						
							| 8 | 1 2 3 4 5 7 | nmvs | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 9 | 6 8 | syl3an1 | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 10 |  | cphclm | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  ℂMod ) | 
						
							| 11 | 4 5 | clmabs | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝐾 )  →  ( abs ‘ 𝑋 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑋  ∈  𝐾 )  →  ( abs ‘ 𝑋 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( abs ‘ 𝑋 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( ( abs ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( abs ‘ 𝑋 )  ·  ( 𝑁 ‘ 𝑌 ) ) ) |