| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphnmvs.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | cphnmvs.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | cphnmvs.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | cphnmvs.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | cphnmvs.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | cphnlm |  |-  ( W e. CPreHil -> W e. NrmMod ) | 
						
							| 7 |  | eqid |  |-  ( norm ` F ) = ( norm ` F ) | 
						
							| 8 | 1 2 3 4 5 7 | nmvs |  |-  ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) | 
						
							| 9 | 6 8 | syl3an1 |  |-  ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) | 
						
							| 10 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 11 | 4 5 | clmabs |  |-  ( ( W e. CMod /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) | 
						
							| 12 | 10 11 | sylan |  |-  ( ( W e. CPreHil /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( ( abs ` X ) x. ( N ` Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) | 
						
							| 15 | 9 14 | eqtr4d |  |-  ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( abs ` X ) x. ( N ` Y ) ) ) |