| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | clmsub.k |  |-  K = ( Base ` F ) | 
						
							| 3 | 1 2 | clmsca |  |-  ( W e. CMod -> F = ( CCfld |`s K ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( W e. CMod -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( W e. CMod /\ A e. K ) -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( ( W e. CMod /\ A e. K ) -> ( ( norm ` F ) ` A ) = ( ( norm ` ( CCfld |`s K ) ) ` A ) ) | 
						
							| 7 | 1 2 | clmsubrg |  |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) ) | 
						
							| 8 |  | subrgsubg |  |-  ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) | 
						
							| 10 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 11 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 12 |  | eqid |  |-  ( norm ` ( CCfld |`s K ) ) = ( norm ` ( CCfld |`s K ) ) | 
						
							| 13 | 10 11 12 | subgnm2 |  |-  ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) | 
						
							| 14 | 9 13 | sylan |  |-  ( ( W e. CMod /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) | 
						
							| 15 | 6 14 | eqtr2d |  |-  ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |