Step |
Hyp |
Ref |
Expression |
1 |
|
reipcl.v |
β’ π = ( Base β π ) |
2 |
|
reipcl.h |
β’ , = ( Β·π β π ) |
3 |
|
cphngp |
β’ ( π β βPreHil β π β NrmGrp ) |
4 |
|
eqid |
β’ ( norm β π ) = ( norm β π ) |
5 |
1 4
|
nmcl |
β’ ( ( π β NrmGrp β§ π΄ β π ) β ( ( norm β π ) β π΄ ) β β ) |
6 |
3 5
|
sylan |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( ( norm β π ) β π΄ ) β β ) |
7 |
6
|
sqge0d |
β’ ( ( π β βPreHil β§ π΄ β π ) β 0 β€ ( ( ( norm β π ) β π΄ ) β 2 ) ) |
8 |
1 2 4
|
nmsq |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( ( ( norm β π ) β π΄ ) β 2 ) = ( π΄ , π΄ ) ) |
9 |
7 8
|
breqtrd |
β’ ( ( π β βPreHil β§ π΄ β π ) β 0 β€ ( π΄ , π΄ ) ) |