| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmpar.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | nmpar.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | nmpar.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | nmpar.n |  |-  N = ( norm ` W ) | 
						
							| 5 |  | nmpar.h |  |-  ., = ( .i ` W ) | 
						
							| 6 |  | nmpar.f |  |-  F = ( Scalar ` W ) | 
						
							| 7 |  | nmpar.k |  |-  K = ( Base ` F ) | 
						
							| 8 |  | nmpar.1 |  |-  ( ph -> W e. CPreHil ) | 
						
							| 9 |  | nmpar.2 |  |-  ( ph -> A e. V ) | 
						
							| 10 |  | nmpar.3 |  |-  ( ph -> B e. V ) | 
						
							| 11 | 5 1 2 8 9 10 9 10 | cph2di |  |-  ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 12 | 5 1 3 8 9 10 9 10 | cph2subdi |  |-  ( ph -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) | 
						
							| 14 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 15 | 8 14 | syl |  |-  ( ph -> W e. CMod ) | 
						
							| 16 | 6 7 | clmsscn |  |-  ( W e. CMod -> K C_ CC ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> K C_ CC ) | 
						
							| 18 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 19 | 8 18 | syl |  |-  ( ph -> W e. PreHil ) | 
						
							| 20 | 6 5 1 7 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. K ) | 
						
							| 21 | 19 9 9 20 | syl3anc |  |-  ( ph -> ( A ., A ) e. K ) | 
						
							| 22 | 6 5 1 7 | ipcl |  |-  ( ( W e. PreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. K ) | 
						
							| 23 | 19 10 10 22 | syl3anc |  |-  ( ph -> ( B ., B ) e. K ) | 
						
							| 24 | 6 7 | clmacl |  |-  ( ( W e. CMod /\ ( A ., A ) e. K /\ ( B ., B ) e. K ) -> ( ( A ., A ) + ( B ., B ) ) e. K ) | 
						
							| 25 | 15 21 23 24 | syl3anc |  |-  ( ph -> ( ( A ., A ) + ( B ., B ) ) e. K ) | 
						
							| 26 | 17 25 | sseldd |  |-  ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) | 
						
							| 27 | 6 5 1 7 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) | 
						
							| 28 | 19 9 10 27 | syl3anc |  |-  ( ph -> ( A ., B ) e. K ) | 
						
							| 29 | 6 5 1 7 | ipcl |  |-  ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) | 
						
							| 30 | 19 10 9 29 | syl3anc |  |-  ( ph -> ( B ., A ) e. K ) | 
						
							| 31 | 6 7 | clmacl |  |-  ( ( W e. CMod /\ ( A ., B ) e. K /\ ( B ., A ) e. K ) -> ( ( A ., B ) + ( B ., A ) ) e. K ) | 
						
							| 32 | 15 28 30 31 | syl3anc |  |-  ( ph -> ( ( A ., B ) + ( B ., A ) ) e. K ) | 
						
							| 33 | 17 32 | sseldd |  |-  ( ph -> ( ( A ., B ) + ( B ., A ) ) e. CC ) | 
						
							| 34 | 26 33 26 | ppncand |  |-  ( ph -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) | 
						
							| 35 | 13 34 | eqtrd |  |-  ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) | 
						
							| 36 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 37 | 8 36 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 38 | 1 2 | lmodvacl |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) | 
						
							| 39 | 37 9 10 38 | syl3anc |  |-  ( ph -> ( A .+ B ) e. V ) | 
						
							| 40 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 41 | 8 39 40 | syl2anc |  |-  ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 42 | 1 3 | lmodvsubcl |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) | 
						
							| 43 | 37 9 10 42 | syl3anc |  |-  ( ph -> ( A .- B ) e. V ) | 
						
							| 44 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .- B ) e. V ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) | 
						
							| 45 | 8 43 44 | syl2anc |  |-  ( ph -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) | 
						
							| 46 | 41 45 | oveq12d |  |-  ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) ) | 
						
							| 47 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 48 | 8 9 47 | syl2anc |  |-  ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 49 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) | 
						
							| 50 | 8 10 49 | syl2anc |  |-  ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) | 
						
							| 51 | 48 50 | oveq12d |  |-  ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) ) | 
						
							| 53 | 26 | 2timesd |  |-  ( ph -> ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) | 
						
							| 54 | 52 53 | eqtrd |  |-  ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) | 
						
							| 55 | 35 46 54 | 3eqtr4d |  |-  ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |