| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphdir.P |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | cph2di.1 |  |-  ( ph -> W e. CPreHil ) | 
						
							| 5 |  | cph2di.2 |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | cph2di.3 |  |-  ( ph -> B e. V ) | 
						
							| 7 |  | cph2di.4 |  |-  ( ph -> C e. V ) | 
						
							| 8 |  | cph2di.5 |  |-  ( ph -> D e. V ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 10 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 11 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> W e. PreHil ) | 
						
							| 13 | 9 1 2 3 10 12 5 6 7 8 | ip2di |  |-  ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) | 
						
							| 14 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 15 | 9 | clmadd |  |-  ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) | 
						
							| 16 | 4 14 15 | 3syl |  |-  ( ph -> + = ( +g ` ( Scalar ` W ) ) ) | 
						
							| 17 | 16 | oveqd |  |-  ( ph -> ( ( A ., C ) + ( B ., D ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ) | 
						
							| 18 | 16 | oveqd |  |-  ( ph -> ( ( A ., D ) + ( B ., C ) ) = ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) | 
						
							| 19 | 16 17 18 | oveq123d |  |-  ( ph -> ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) | 
						
							| 20 | 13 19 | eqtr4d |  |-  ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) ) |