| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphsubdir.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 |  | eqid |  |-  ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) | 
						
							| 7 | 5 1 2 3 6 | ipsubdir |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) ( -g ` ( Scalar ` W ) ) ( B ., C ) ) ) | 
						
							| 8 | 4 7 | sylan |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) ( -g ` ( Scalar ` W ) ) ( B ., C ) ) ) | 
						
							| 9 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. CMod ) | 
						
							| 11 | 4 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) | 
						
							| 12 |  | simpr1 |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) | 
						
							| 13 |  | simpr3 |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 15 | 5 1 2 14 | ipcl |  |-  ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 16 | 11 12 13 15 | syl3anc |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 17 |  | simpr2 |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) | 
						
							| 18 | 5 1 2 14 | ipcl |  |-  ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 19 | 11 17 13 18 | syl3anc |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 20 | 5 14 | clmsub |  |-  ( ( W e. CMod /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) /\ ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., C ) - ( B ., C ) ) = ( ( A ., C ) ( -g ` ( Scalar ` W ) ) ( B ., C ) ) ) | 
						
							| 21 | 10 16 19 20 | syl3anc |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., C ) - ( B ., C ) ) = ( ( A ., C ) ( -g ` ( Scalar ` W ) ) ( B ., C ) ) ) | 
						
							| 22 | 8 21 | eqtr4d |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) ., C ) = ( ( A ., C ) - ( B ., C ) ) ) |