| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
cphdir.P |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
cph2di.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
| 5 |
|
cph2di.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
cph2di.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 7 |
|
cph2di.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
cph2di.5 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 13 |
9 1 2 3 10 12 5 6 7 8
|
ip2di |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 14 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 15 |
9
|
clmadd |
⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 |
4 14 15
|
3syl |
⊢ ( 𝜑 → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 |
16
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ) |
| 18 |
16
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
| 19 |
16 17 18
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 20 |
13 19
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |