| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmpar.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | nmpar.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | nmpar.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | nmpar.n |  |-  N = ( norm ` W ) | 
						
							| 5 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 8 |  | simp1 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> W e. CPreHil ) | 
						
							| 9 |  | simp2 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> A e. V ) | 
						
							| 10 |  | simp3 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> B e. V ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | nmparlem |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |