| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipfval.x |  |-  X = ( Base ` W ) | 
						
							| 2 |  | cphipfval.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | cphipfval.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | cphipfval.n |  |-  N = ( norm ` W ) | 
						
							| 5 |  | cphipfval.i |  |-  ., = ( .i ` W ) | 
						
							| 6 |  | cphipval2.m |  |-  .- = ( -g ` W ) | 
						
							| 7 |  | cphipval2.f |  |-  F = ( Scalar ` W ) | 
						
							| 8 |  | cphipval2.k |  |-  K = ( Base ` F ) | 
						
							| 9 |  | simpl |  |-  ( ( W e. CPreHil /\ _i e. K ) -> W e. CPreHil ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) | 
						
							| 11 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. CPreHil /\ _i e. K ) -> W e. NrmGrp ) | 
						
							| 13 |  | ngpgrp |  |-  ( W e. NrmGrp -> W e. Grp ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( W e. CPreHil /\ _i e. K ) -> W e. Grp ) | 
						
							| 15 | 1 2 | grpcl |  |-  ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 16 | 14 15 | syl3an1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) | 
						
							| 17 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .+ B ) e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 18 | 10 16 17 | syl2anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) | 
						
							| 19 |  | simp2 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 20 |  | simp3 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 21 | 5 1 2 10 19 20 19 20 | cph2di |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 22 | 18 21 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 23 | 1 6 | grpsubcl |  |-  ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) | 
						
							| 24 | 14 23 | syl3an1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) | 
						
							| 25 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .- B ) e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) | 
						
							| 26 | 10 24 25 | syl2anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) | 
						
							| 27 | 5 1 6 10 19 20 19 20 | cph2subdi |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 28 | 26 27 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 29 | 22 28 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) - ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) | 
						
							| 30 | 1 5 | reipcl |  |-  ( ( W e. CPreHil /\ A e. X ) -> ( A ., A ) e. RR ) | 
						
							| 31 | 30 | adantlr |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X ) -> ( A ., A ) e. RR ) | 
						
							| 32 | 31 | recnd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X ) -> ( A ., A ) e. CC ) | 
						
							| 33 | 32 | 3adant3 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., A ) e. CC ) | 
						
							| 34 | 1 5 | reipcl |  |-  ( ( W e. CPreHil /\ B e. X ) -> ( B ., B ) e. RR ) | 
						
							| 35 | 34 | adantlr |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( B ., B ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( B ., B ) e. CC ) | 
						
							| 37 | 36 | 3adant2 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( B ., B ) e. CC ) | 
						
							| 38 | 33 37 | addcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., A ) + ( B ., B ) ) e. CC ) | 
						
							| 39 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. X /\ B e. X ) -> ( A ., B ) e. CC ) | 
						
							| 40 | 9 39 | syl3an1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) e. CC ) | 
						
							| 41 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ B e. X /\ A e. X ) -> ( B ., A ) e. CC ) | 
						
							| 42 | 9 41 | syl3an1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X /\ A e. X ) -> ( B ., A ) e. CC ) | 
						
							| 43 | 42 | 3com23 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( B ., A ) e. CC ) | 
						
							| 44 | 40 43 | addcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( B ., A ) ) e. CC ) | 
						
							| 45 | 38 44 44 | pnncand |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) - ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 46 | 29 45 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) | 
						
							| 47 | 14 | 3ad2ant1 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. Grp ) | 
						
							| 48 |  | cphlmod |  |-  ( W e. CPreHil -> W e. LMod ) | 
						
							| 49 | 48 | adantr |  |-  ( ( W e. CPreHil /\ _i e. K ) -> W e. LMod ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> W e. LMod ) | 
						
							| 51 |  | simplr |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> _i e. K ) | 
						
							| 52 |  | simpr |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> B e. X ) | 
						
							| 53 | 1 7 3 8 | lmodvscl |  |-  ( ( W e. LMod /\ _i e. K /\ B e. X ) -> ( _i .x. B ) e. X ) | 
						
							| 54 | 50 51 52 53 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( _i .x. B ) e. X ) | 
						
							| 55 | 54 | 3adant2 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i .x. B ) e. X ) | 
						
							| 56 | 1 2 | grpcl |  |-  ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) | 
						
							| 57 | 47 19 55 56 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) | 
						
							| 58 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .+ ( _i .x. B ) ) e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) ) | 
						
							| 59 | 10 57 58 | syl2anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) ) | 
						
							| 60 | 5 1 2 10 19 55 19 55 | cph2di |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) | 
						
							| 61 | 59 60 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) | 
						
							| 62 | 1 6 | grpsubcl |  |-  ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .- ( _i .x. B ) ) e. X ) | 
						
							| 63 | 47 19 55 62 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- ( _i .x. B ) ) e. X ) | 
						
							| 64 | 1 5 4 | nmsq |  |-  ( ( W e. CPreHil /\ ( A .- ( _i .x. B ) ) e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) ) | 
						
							| 65 | 10 63 64 | syl2anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) ) | 
						
							| 66 | 5 1 6 10 19 55 19 55 | cph2subdi |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) | 
						
							| 67 | 65 66 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) | 
						
							| 68 | 61 67 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) = ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) | 
						
							| 69 | 68 | oveq2d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) ) | 
						
							| 70 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ ( _i .x. B ) e. X /\ ( _i .x. B ) e. X ) -> ( ( _i .x. B ) ., ( _i .x. B ) ) e. CC ) | 
						
							| 71 | 10 55 55 70 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., ( _i .x. B ) ) e. CC ) | 
						
							| 72 | 33 71 | addcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) e. CC ) | 
						
							| 73 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A ., ( _i .x. B ) ) e. CC ) | 
						
							| 74 | 10 19 55 73 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) e. CC ) | 
						
							| 75 | 1 5 | cphipcl |  |-  ( ( W e. CPreHil /\ ( _i .x. B ) e. X /\ A e. X ) -> ( ( _i .x. B ) ., A ) e. CC ) | 
						
							| 76 | 10 55 19 75 | syl3anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., A ) e. CC ) | 
						
							| 77 | 74 76 | addcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) e. CC ) | 
						
							| 78 | 72 77 77 | pnncand |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) = ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) | 
						
							| 80 | 1 3 5 7 8 | cphassir |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) | 
						
							| 81 | 1 3 5 7 8 | cphassi |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., A ) = ( _i x. ( B ., A ) ) ) | 
						
							| 82 | 80 81 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) = ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) | 
						
							| 83 | 82 82 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) = ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( _i x. ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) ) | 
						
							| 85 |  | ax-icn |  |-  _i e. CC | 
						
							| 86 | 85 | a1i |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. CC ) | 
						
							| 87 |  | negicn |  |-  -u _i e. CC | 
						
							| 88 | 87 | a1i |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> -u _i e. CC ) | 
						
							| 89 | 88 40 | mulcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( -u _i x. ( A ., B ) ) e. CC ) | 
						
							| 90 | 86 43 | mulcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( B ., A ) ) e. CC ) | 
						
							| 91 | 89 90 | addcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) e. CC ) | 
						
							| 92 | 86 91 91 | adddid |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) ) | 
						
							| 93 | 86 89 90 | adddid |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) = ( ( _i x. ( -u _i x. ( A ., B ) ) ) + ( _i x. ( _i x. ( B ., A ) ) ) ) ) | 
						
							| 94 | 86 88 40 | mulassd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. -u _i ) x. ( A ., B ) ) = ( _i x. ( -u _i x. ( A ., B ) ) ) ) | 
						
							| 95 | 85 85 | mulneg2i |  |-  ( _i x. -u _i ) = -u ( _i x. _i ) | 
						
							| 96 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 97 | 96 | negeqi |  |-  -u ( _i x. _i ) = -u -u 1 | 
						
							| 98 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 99 | 95 97 98 | 3eqtri |  |-  ( _i x. -u _i ) = 1 | 
						
							| 100 | 99 | oveq1i |  |-  ( ( _i x. -u _i ) x. ( A ., B ) ) = ( 1 x. ( A ., B ) ) | 
						
							| 101 | 94 100 | eqtr3di |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( -u _i x. ( A ., B ) ) ) = ( 1 x. ( A ., B ) ) ) | 
						
							| 102 | 86 86 43 | mulassd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. _i ) x. ( B ., A ) ) = ( _i x. ( _i x. ( B ., A ) ) ) ) | 
						
							| 103 | 96 | oveq1i |  |-  ( ( _i x. _i ) x. ( B ., A ) ) = ( -u 1 x. ( B ., A ) ) | 
						
							| 104 | 102 103 | eqtr3di |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( _i x. ( B ., A ) ) ) = ( -u 1 x. ( B ., A ) ) ) | 
						
							| 105 | 101 104 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( -u _i x. ( A ., B ) ) ) + ( _i x. ( _i x. ( B ., A ) ) ) ) = ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) | 
						
							| 106 | 93 105 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) = ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) | 
						
							| 107 | 106 106 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) + ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) ) | 
						
							| 108 | 40 | mullidd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 1 x. ( A ., B ) ) = ( A ., B ) ) | 
						
							| 109 | 108 | oveq1d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) ) | 
						
							| 110 |  | addneg1mul |  |-  ( ( ( A ., B ) e. CC /\ ( B ., A ) e. CC ) -> ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) | 
						
							| 111 | 40 43 110 | syl2anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) | 
						
							| 112 | 109 111 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) | 
						
							| 113 | 112 112 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) + ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) | 
						
							| 114 | 107 113 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) | 
						
							| 115 | 84 92 114 | 3eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) | 
						
							| 116 | 69 79 115 | 3eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) | 
						
							| 117 | 46 116 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) / 4 ) ) | 
						
							| 119 | 40 43 | subcld |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) - ( B ., A ) ) e. CC ) | 
						
							| 120 | 44 44 119 119 | add4d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) + ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) ) | 
						
							| 121 | 40 43 40 | ppncand |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) = ( ( A ., B ) + ( A ., B ) ) ) | 
						
							| 122 | 121 121 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) + ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) ) | 
						
							| 124 | 123 | oveq1d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) / 4 ) = ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) ) | 
						
							| 125 | 40 | 2timesd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 2 x. ( A ., B ) ) = ( ( A ., B ) + ( A ., B ) ) ) | 
						
							| 126 | 125 | eqcomd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( A ., B ) ) = ( 2 x. ( A ., B ) ) ) | 
						
							| 127 | 126 126 | oveq12d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) = ( ( 2 x. ( A ., B ) ) + ( 2 x. ( A ., B ) ) ) ) | 
						
							| 128 |  | 2cnd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 2 e. CC ) | 
						
							| 129 | 128 128 40 | adddird |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 2 + 2 ) x. ( A ., B ) ) = ( ( 2 x. ( A ., B ) ) + ( 2 x. ( A ., B ) ) ) ) | 
						
							| 130 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 131 | 130 | a1i |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 2 + 2 ) = 4 ) | 
						
							| 132 | 131 | oveq1d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 2 + 2 ) x. ( A ., B ) ) = ( 4 x. ( A ., B ) ) ) | 
						
							| 133 | 127 129 132 | 3eqtr2d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) = ( 4 x. ( A ., B ) ) ) | 
						
							| 134 | 133 | oveq1d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) = ( ( 4 x. ( A ., B ) ) / 4 ) ) | 
						
							| 135 |  | 4cn |  |-  4 e. CC | 
						
							| 136 | 135 | a1i |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 e. CC ) | 
						
							| 137 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 138 | 137 | a1i |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 =/= 0 ) | 
						
							| 139 | 40 136 138 | divcan3d |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 4 x. ( A ., B ) ) / 4 ) = ( A ., B ) ) | 
						
							| 140 | 134 139 | eqtrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) = ( A ., B ) ) | 
						
							| 141 | 118 124 140 | 3eqtrrd |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) = ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |