| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphassi.x |  |-  X = ( Base ` W ) | 
						
							| 2 |  | cphassi.s |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | cphassi.i |  |-  ., = ( .i ` W ) | 
						
							| 4 |  | cphassi.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | cphassi.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | simp1l |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) | 
						
							| 7 |  | simp1r |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. K ) | 
						
							| 8 |  | simp2 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 9 |  | simp3 |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 10 | 3 1 4 5 2 | cphassr |  |-  ( ( W e. CPreHil /\ ( _i e. K /\ A e. X /\ B e. X ) ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) | 
						
							| 11 | 6 7 8 9 10 | syl13anc |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) | 
						
							| 12 |  | cji |  |-  ( * ` _i ) = -u _i | 
						
							| 13 | 12 | oveq1i |  |-  ( ( * ` _i ) x. ( A ., B ) ) = ( -u _i x. ( A ., B ) ) | 
						
							| 14 | 11 13 | eqtrdi |  |-  ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) |