| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphass.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | cphass.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | cphass.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 7 | 6 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. CMod ) | 
						
							| 8 | 3 | clmmul |  |-  ( W e. CMod -> x. = ( .r ` F ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) | 
						
							| 10 |  | eqidd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) = ( B ., C ) ) | 
						
							| 11 | 3 | clmcj |  |-  ( W e. CMod -> * = ( *r ` F ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> * = ( *r ` F ) ) | 
						
							| 13 | 12 | fveq1d |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) = ( ( *r ` F ) ` A ) ) | 
						
							| 14 | 9 10 13 | oveq123d |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( B ., C ) x. ( * ` A ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) | 
						
							| 15 | 3 4 | clmsscn |  |-  ( W e. CMod -> K C_ CC ) | 
						
							| 16 | 7 15 | syl |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> K C_ CC ) | 
						
							| 17 |  | simpr1 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) | 
						
							| 18 | 16 17 | sseldd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. CC ) | 
						
							| 19 | 18 | cjcld |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) e. CC ) | 
						
							| 20 | 2 1 | cphipcl |  |-  ( ( W e. CPreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. CC ) | 
						
							| 21 | 20 | 3adant3r1 |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. CC ) | 
						
							| 22 | 19 21 | mulcomd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( * ` A ) x. ( B ., C ) ) = ( ( B ., C ) x. ( * ` A ) ) ) | 
						
							| 23 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 24 |  | 3anrot |  |-  ( ( A e. K /\ B e. V /\ C e. V ) <-> ( B e. V /\ C e. V /\ A e. K ) ) | 
						
							| 25 | 24 | biimpi |  |-  ( ( A e. K /\ B e. V /\ C e. V ) -> ( B e. V /\ C e. V /\ A e. K ) ) | 
						
							| 26 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 27 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 28 | 3 1 2 4 5 26 27 | ipassr |  |-  ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ A e. K ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) | 
						
							| 29 | 23 25 28 | syl2an |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) | 
						
							| 30 | 14 22 29 | 3eqtr4rd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( * ` A ) x. ( B ., C ) ) ) |