| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphass.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | cphass.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | cphass.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 7 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 8 | 3 1 2 4 5 7 | ipass |  |-  ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) | 
						
							| 9 | 6 8 | sylan |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) | 
						
							| 10 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 11 | 3 | clmmul |  |-  ( W e. CMod -> x. = ( .r ` F ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( W e. CPreHil -> x. = ( .r ` F ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) | 
						
							| 14 | 13 | oveqd |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A x. ( B ., C ) ) = ( A ( .r ` F ) ( B ., C ) ) ) | 
						
							| 15 | 9 14 | eqtr4d |  |-  ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A x. ( B ., C ) ) ) |