Metamath Proof Explorer


Theorem cphassr

Description: "Associative" law for second argument of inner product (compare cphass ). See ipassr , his52 . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
cphass.f 𝐹 = ( Scalar ‘ 𝑊 )
cphass.k 𝐾 = ( Base ‘ 𝐹 )
cphass.s · = ( ·𝑠𝑊 )
Assertion cphassr ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 cphass.f 𝐹 = ( Scalar ‘ 𝑊 )
4 cphass.k 𝐾 = ( Base ‘ 𝐹 )
5 cphass.s · = ( ·𝑠𝑊 )
6 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
7 6 adantr ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → 𝑊 ∈ ℂMod )
8 3 clmmul ( 𝑊 ∈ ℂMod → · = ( .r𝐹 ) )
9 7 8 syl ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → · = ( .r𝐹 ) )
10 eqidd ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐵 , 𝐶 ) = ( 𝐵 , 𝐶 ) )
11 3 clmcj ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟𝐹 ) )
12 7 11 syl ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ∗ = ( *𝑟𝐹 ) )
13 12 fveq1d ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ∗ ‘ 𝐴 ) = ( ( *𝑟𝐹 ) ‘ 𝐴 ) )
14 9 10 13 oveq123d ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) = ( ( 𝐵 , 𝐶 ) ( .r𝐹 ) ( ( *𝑟𝐹 ) ‘ 𝐴 ) ) )
15 3 4 clmsscn ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ )
16 7 15 syl ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → 𝐾 ⊆ ℂ )
17 simpr1 ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → 𝐴𝐾 )
18 16 17 sseldd ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → 𝐴 ∈ ℂ )
19 18 cjcld ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ∗ ‘ 𝐴 ) ∈ ℂ )
20 2 1 cphipcl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵𝑉𝐶𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ℂ )
21 20 3adant3r1 ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐵 , 𝐶 ) ∈ ℂ )
22 19 21 mulcomd ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) )
23 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
24 3anrot ( ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ↔ ( 𝐵𝑉𝐶𝑉𝐴𝐾 ) )
25 24 biimpi ( ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) → ( 𝐵𝑉𝐶𝑉𝐴𝐾 ) )
26 eqid ( .r𝐹 ) = ( .r𝐹 )
27 eqid ( *𝑟𝐹 ) = ( *𝑟𝐹 )
28 3 1 2 4 5 26 27 ipassr ( ( 𝑊 ∈ PreHil ∧ ( 𝐵𝑉𝐶𝑉𝐴𝐾 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r𝐹 ) ( ( *𝑟𝐹 ) ‘ 𝐴 ) ) )
29 23 25 28 syl2an ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r𝐹 ) ( ( *𝑟𝐹 ) ‘ 𝐴 ) ) )
30 14 22 29 3eqtr4rd ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴𝐾𝐵𝑉𝐶𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) )