Metamath Proof Explorer


Theorem cphipval2

Description: Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007) (Revised by AV, 18-Oct-2021)

Ref Expression
Hypotheses cphipfval.x X=BaseW
cphipfval.p +˙=+W
cphipfval.s ·˙=W
cphipfval.n N=normW
cphipfval.i ,˙=𝑖W
cphipval2.m -˙=-W
cphipval2.f F=ScalarW
cphipval2.k K=BaseF
Assertion cphipval2 WCPreHiliKAXBXA,˙B=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24

Proof

Step Hyp Ref Expression
1 cphipfval.x X=BaseW
2 cphipfval.p +˙=+W
3 cphipfval.s ·˙=W
4 cphipfval.n N=normW
5 cphipfval.i ,˙=𝑖W
6 cphipval2.m -˙=-W
7 cphipval2.f F=ScalarW
8 cphipval2.k K=BaseF
9 simpl WCPreHiliKWCPreHil
10 9 3ad2ant1 WCPreHiliKAXBXWCPreHil
11 cphngp WCPreHilWNrmGrp
12 11 adantr WCPreHiliKWNrmGrp
13 ngpgrp WNrmGrpWGrp
14 12 13 syl WCPreHiliKWGrp
15 1 2 grpcl WGrpAXBXA+˙BX
16 14 15 syl3an1 WCPreHiliKAXBXA+˙BX
17 1 5 4 nmsq WCPreHilA+˙BXNA+˙B2=A+˙B,˙A+˙B
18 10 16 17 syl2anc WCPreHiliKAXBXNA+˙B2=A+˙B,˙A+˙B
19 simp2 WCPreHiliKAXBXAX
20 simp3 WCPreHiliKAXBXBX
21 5 1 2 10 19 20 19 20 cph2di WCPreHiliKAXBXA+˙B,˙A+˙B=A,˙A+B,˙B+A,˙B+B,˙A
22 18 21 eqtrd WCPreHiliKAXBXNA+˙B2=A,˙A+B,˙B+A,˙B+B,˙A
23 1 6 grpsubcl WGrpAXBXA-˙BX
24 14 23 syl3an1 WCPreHiliKAXBXA-˙BX
25 1 5 4 nmsq WCPreHilA-˙BXNA-˙B2=A-˙B,˙A-˙B
26 10 24 25 syl2anc WCPreHiliKAXBXNA-˙B2=A-˙B,˙A-˙B
27 5 1 6 10 19 20 19 20 cph2subdi WCPreHiliKAXBXA-˙B,˙A-˙B=A,˙A+B,˙B-A,˙B+B,˙A
28 26 27 eqtrd WCPreHiliKAXBXNA-˙B2=A,˙A+B,˙B-A,˙B+B,˙A
29 22 28 oveq12d WCPreHiliKAXBXNA+˙B2NA-˙B2=A,˙A+B,˙B+A,˙B+B,˙A-A,˙A+B,˙B-A,˙B+B,˙A
30 1 5 reipcl WCPreHilAXA,˙A
31 30 adantlr WCPreHiliKAXA,˙A
32 31 recnd WCPreHiliKAXA,˙A
33 32 3adant3 WCPreHiliKAXBXA,˙A
34 1 5 reipcl WCPreHilBXB,˙B
35 34 adantlr WCPreHiliKBXB,˙B
36 35 recnd WCPreHiliKBXB,˙B
37 36 3adant2 WCPreHiliKAXBXB,˙B
38 33 37 addcld WCPreHiliKAXBXA,˙A+B,˙B
39 1 5 cphipcl WCPreHilAXBXA,˙B
40 9 39 syl3an1 WCPreHiliKAXBXA,˙B
41 1 5 cphipcl WCPreHilBXAXB,˙A
42 9 41 syl3an1 WCPreHiliKBXAXB,˙A
43 42 3com23 WCPreHiliKAXBXB,˙A
44 40 43 addcld WCPreHiliKAXBXA,˙B+B,˙A
45 38 44 44 pnncand WCPreHiliKAXBXA,˙A+B,˙B+A,˙B+B,˙A-A,˙A+B,˙B-A,˙B+B,˙A=A,˙B+B,˙A+A,˙B+B,˙A
46 29 45 eqtrd WCPreHiliKAXBXNA+˙B2NA-˙B2=A,˙B+B,˙A+A,˙B+B,˙A
47 14 3ad2ant1 WCPreHiliKAXBXWGrp
48 cphlmod WCPreHilWLMod
49 48 adantr WCPreHiliKWLMod
50 49 adantr WCPreHiliKBXWLMod
51 simplr WCPreHiliKBXiK
52 simpr WCPreHiliKBXBX
53 1 7 3 8 lmodvscl WLModiKBXi·˙BX
54 50 51 52 53 syl3anc WCPreHiliKBXi·˙BX
55 54 3adant2 WCPreHiliKAXBXi·˙BX
56 1 2 grpcl WGrpAXi·˙BXA+˙i·˙BX
57 47 19 55 56 syl3anc WCPreHiliKAXBXA+˙i·˙BX
58 1 5 4 nmsq WCPreHilA+˙i·˙BXNA+˙i·˙B2=A+˙i·˙B,˙A+˙i·˙B
59 10 57 58 syl2anc WCPreHiliKAXBXNA+˙i·˙B2=A+˙i·˙B,˙A+˙i·˙B
60 5 1 2 10 19 55 19 55 cph2di WCPreHiliKAXBXA+˙i·˙B,˙A+˙i·˙B=A,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A
61 59 60 eqtrd WCPreHiliKAXBXNA+˙i·˙B2=A,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A
62 1 6 grpsubcl WGrpAXi·˙BXA-˙i·˙BX
63 47 19 55 62 syl3anc WCPreHiliKAXBXA-˙i·˙BX
64 1 5 4 nmsq WCPreHilA-˙i·˙BXNA-˙i·˙B2=A-˙i·˙B,˙A-˙i·˙B
65 10 63 64 syl2anc WCPreHiliKAXBXNA-˙i·˙B2=A-˙i·˙B,˙A-˙i·˙B
66 5 1 6 10 19 55 19 55 cph2subdi WCPreHiliKAXBXA-˙i·˙B,˙A-˙i·˙B=A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A
67 65 66 eqtrd WCPreHiliKAXBXNA-˙i·˙B2=A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A
68 61 67 oveq12d WCPreHiliKAXBXNA+˙i·˙B2NA-˙i·˙B2=A,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A-A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A
69 68 oveq2d WCPreHiliKAXBXiNA+˙i·˙B2NA-˙i·˙B2=iA,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A-A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A
70 1 5 cphipcl WCPreHili·˙BXi·˙BXi·˙B,˙i·˙B
71 10 55 55 70 syl3anc WCPreHiliKAXBXi·˙B,˙i·˙B
72 33 71 addcld WCPreHiliKAXBXA,˙A+i·˙B,˙i·˙B
73 1 5 cphipcl WCPreHilAXi·˙BXA,˙i·˙B
74 10 19 55 73 syl3anc WCPreHiliKAXBXA,˙i·˙B
75 1 5 cphipcl WCPreHili·˙BXAXi·˙B,˙A
76 10 55 19 75 syl3anc WCPreHiliKAXBXi·˙B,˙A
77 74 76 addcld WCPreHiliKAXBXA,˙i·˙B+i·˙B,˙A
78 72 77 77 pnncand WCPreHiliKAXBXA,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A-A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A=A,˙i·˙B+i·˙B,˙A+A,˙i·˙B+i·˙B,˙A
79 78 oveq2d WCPreHiliKAXBXiA,˙A+i·˙B,˙i·˙B+A,˙i·˙B+i·˙B,˙A-A,˙A+i·˙B,˙i·˙B-A,˙i·˙B+i·˙B,˙A=iA,˙i·˙B+i·˙B,˙A+A,˙i·˙B+i·˙B,˙A
80 1 3 5 7 8 cphassir WCPreHiliKAXBXA,˙i·˙B=iA,˙B
81 1 3 5 7 8 cphassi WCPreHiliKAXBXi·˙B,˙A=iB,˙A
82 80 81 oveq12d WCPreHiliKAXBXA,˙i·˙B+i·˙B,˙A=iA,˙B+iB,˙A
83 82 82 oveq12d WCPreHiliKAXBXA,˙i·˙B+i·˙B,˙A+A,˙i·˙B+i·˙B,˙A=iA,˙B+iB,˙A+iA,˙B+iB,˙A
84 83 oveq2d WCPreHiliKAXBXiA,˙i·˙B+i·˙B,˙A+A,˙i·˙B+i·˙B,˙A=iiA,˙B+iB,˙A+iA,˙B+iB,˙A
85 ax-icn i
86 85 a1i WCPreHiliKAXBXi
87 negicn i
88 87 a1i WCPreHiliKAXBXi
89 88 40 mulcld WCPreHiliKAXBXiA,˙B
90 86 43 mulcld WCPreHiliKAXBXiB,˙A
91 89 90 addcld WCPreHiliKAXBXiA,˙B+iB,˙A
92 86 91 91 adddid WCPreHiliKAXBXiiA,˙B+iB,˙A+iA,˙B+iB,˙A=iiA,˙B+iB,˙A+iiA,˙B+iB,˙A
93 86 89 90 adddid WCPreHiliKAXBXiiA,˙B+iB,˙A=iiA,˙B+iiB,˙A
94 86 88 40 mulassd WCPreHiliKAXBXiiA,˙B=iiA,˙B
95 85 85 mulneg2i ii=ii
96 ixi ii=1
97 96 negeqi ii=-1
98 negneg1e1 -1=1
99 95 97 98 3eqtri ii=1
100 99 oveq1i iiA,˙B=1A,˙B
101 94 100 eqtr3di WCPreHiliKAXBXiiA,˙B=1A,˙B
102 86 86 43 mulassd WCPreHiliKAXBXiiB,˙A=iiB,˙A
103 96 oveq1i iiB,˙A=-1B,˙A
104 102 103 eqtr3di WCPreHiliKAXBXiiB,˙A=-1B,˙A
105 101 104 oveq12d WCPreHiliKAXBXiiA,˙B+iiB,˙A=1A,˙B+-1B,˙A
106 93 105 eqtrd WCPreHiliKAXBXiiA,˙B+iB,˙A=1A,˙B+-1B,˙A
107 106 106 oveq12d WCPreHiliKAXBXiiA,˙B+iB,˙A+iiA,˙B+iB,˙A=1A,˙B+-1B,˙A+1A,˙B+-1B,˙A
108 40 mullidd WCPreHiliKAXBX1A,˙B=A,˙B
109 108 oveq1d WCPreHiliKAXBX1A,˙B+-1B,˙A=A,˙B+-1B,˙A
110 addneg1mul A,˙BB,˙AA,˙B+-1B,˙A=A,˙BB,˙A
111 40 43 110 syl2anc WCPreHiliKAXBXA,˙B+-1B,˙A=A,˙BB,˙A
112 109 111 eqtrd WCPreHiliKAXBX1A,˙B+-1B,˙A=A,˙BB,˙A
113 112 112 oveq12d WCPreHiliKAXBX1A,˙B+-1B,˙A+1A,˙B+-1B,˙A=A,˙BB,˙A+A,˙B-B,˙A
114 107 113 eqtrd WCPreHiliKAXBXiiA,˙B+iB,˙A+iiA,˙B+iB,˙A=A,˙BB,˙A+A,˙B-B,˙A
115 84 92 114 3eqtrd WCPreHiliKAXBXiA,˙i·˙B+i·˙B,˙A+A,˙i·˙B+i·˙B,˙A=A,˙BB,˙A+A,˙B-B,˙A
116 69 79 115 3eqtrd WCPreHiliKAXBXiNA+˙i·˙B2NA-˙i·˙B2=A,˙BB,˙A+A,˙B-B,˙A
117 46 116 oveq12d WCPreHiliKAXBXNA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B2=A,˙B+B,˙A+A,˙B+B,˙A+A,˙BB,˙A+A,˙BB,˙A
118 117 oveq1d WCPreHiliKAXBXNA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24=A,˙B+B,˙A+A,˙B+B,˙A+A,˙BB,˙A+A,˙BB,˙A4
119 40 43 subcld WCPreHiliKAXBXA,˙BB,˙A
120 44 44 119 119 add4d WCPreHiliKAXBXA,˙B+B,˙A+A,˙B+B,˙A+A,˙BB,˙A+A,˙BB,˙A=A,˙B+B,˙A+A,˙BB,˙A+A,˙B+B,˙A+A,˙BB,˙A
121 40 43 40 ppncand WCPreHiliKAXBXA,˙B+B,˙A+A,˙BB,˙A=A,˙B+A,˙B
122 121 121 oveq12d WCPreHiliKAXBXA,˙B+B,˙A+A,˙BB,˙A+A,˙B+B,˙A+A,˙BB,˙A=A,˙B+A,˙B+A,˙B+A,˙B
123 120 122 eqtrd WCPreHiliKAXBXA,˙B+B,˙A+A,˙B+B,˙A+A,˙BB,˙A+A,˙BB,˙A=A,˙B+A,˙B+A,˙B+A,˙B
124 123 oveq1d WCPreHiliKAXBXA,˙B+B,˙A+A,˙B+B,˙A+A,˙BB,˙A+A,˙BB,˙A4=A,˙B+A,˙B+A,˙B+A,˙B4
125 40 2timesd WCPreHiliKAXBX2A,˙B=A,˙B+A,˙B
126 125 eqcomd WCPreHiliKAXBXA,˙B+A,˙B=2A,˙B
127 126 126 oveq12d WCPreHiliKAXBXA,˙B+A,˙B+A,˙B+A,˙B=2A,˙B+2A,˙B
128 2cnd WCPreHiliKAXBX2
129 128 128 40 adddird WCPreHiliKAXBX2+2A,˙B=2A,˙B+2A,˙B
130 2p2e4 2+2=4
131 130 a1i WCPreHiliKAXBX2+2=4
132 131 oveq1d WCPreHiliKAXBX2+2A,˙B=4A,˙B
133 127 129 132 3eqtr2d WCPreHiliKAXBXA,˙B+A,˙B+A,˙B+A,˙B=4A,˙B
134 133 oveq1d WCPreHiliKAXBXA,˙B+A,˙B+A,˙B+A,˙B4=4A,˙B4
135 4cn 4
136 135 a1i WCPreHiliKAXBX4
137 4ne0 40
138 137 a1i WCPreHiliKAXBX40
139 40 136 138 divcan3d WCPreHiliKAXBX4A,˙B4=A,˙B
140 134 139 eqtrd WCPreHiliKAXBXA,˙B+A,˙B+A,˙B+A,˙B4=A,˙B
141 118 124 140 3eqtrrd WCPreHiliKAXBXA,˙B=NA+˙B2-NA-˙B2+iNA+˙i·˙B2NA-˙i·˙B24