Metamath Proof Explorer


Theorem cphassi

Description: Associative law for the first argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)

Ref Expression
Hypotheses cphassi.x X=BaseW
cphassi.s ·˙=W
cphassi.i ,˙=𝑖W
cphassi.f F=ScalarW
cphassi.k K=BaseF
Assertion cphassi WCPreHiliKAXBXi·˙B,˙A=iB,˙A

Proof

Step Hyp Ref Expression
1 cphassi.x X=BaseW
2 cphassi.s ·˙=W
3 cphassi.i ,˙=𝑖W
4 cphassi.f F=ScalarW
5 cphassi.k K=BaseF
6 simp1l WCPreHiliKAXBXWCPreHil
7 simp1r WCPreHiliKAXBXiK
8 simp3 WCPreHiliKAXBXBX
9 simp2 WCPreHiliKAXBXAX
10 3 1 4 5 2 cphass WCPreHiliKBXAXi·˙B,˙A=iB,˙A
11 6 7 8 9 10 syl13anc WCPreHiliKAXBXi·˙B,˙A=iB,˙A