| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphassi.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
| 2 |
|
cphassi.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
cphassi.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 4 |
|
cphassi.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
cphassi.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
simp1l |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ ℂPreHil ) |
| 7 |
|
simp1r |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → i ∈ 𝐾 ) |
| 8 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 10 |
3 1 4 5 2
|
cphass |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) ) |
| 11 |
6 7 8 9 10
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) ) |