| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipfval.x |
|
| 2 |
|
cphipfval.p |
|
| 3 |
|
cphipfval.s |
|
| 4 |
|
cphipfval.n |
|
| 5 |
|
cphipfval.i |
|
| 6 |
|
cphipval2.m |
|
| 7 |
|
cphipval2.f |
|
| 8 |
|
cphipval2.k |
|
| 9 |
1 2 3 4 5 6 7 8
|
cphipval2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
7 8
|
cphsubrg |
|
| 12 |
|
cnfldbas |
|
| 13 |
12
|
subrgss |
|
| 14 |
11 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
|
simp1l |
|
| 18 |
|
cphngp |
|
| 19 |
|
ngpgrp |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
adantr |
|
| 22 |
1 2
|
grpcl |
|
| 23 |
21 22
|
syl3an1 |
|
| 24 |
1 5 4 7 8
|
cphnmcl |
|
| 25 |
17 23 24
|
syl2anc |
|
| 26 |
16 25
|
sseldd |
|
| 27 |
26
|
sqcld |
|
| 28 |
1 6
|
grpsubcl |
|
| 29 |
21 28
|
syl3an1 |
|
| 30 |
1 5 4 7 8
|
cphnmcl |
|
| 31 |
17 29 30
|
syl2anc |
|
| 32 |
16 31
|
sseldd |
|
| 33 |
32
|
sqcld |
|
| 34 |
27 33
|
subcld |
|
| 35 |
|
ax-icn |
|
| 36 |
35
|
a1i |
|
| 37 |
17 20
|
syl |
|
| 38 |
|
simp2 |
|
| 39 |
|
cphlmod |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
|
simp1r |
|
| 43 |
|
simp3 |
|
| 44 |
1 7 3 8
|
lmodvscl |
|
| 45 |
41 42 43 44
|
syl3anc |
|
| 46 |
1 2
|
grpcl |
|
| 47 |
37 38 45 46
|
syl3anc |
|
| 48 |
1 5 4 7 8
|
cphnmcl |
|
| 49 |
17 47 48
|
syl2anc |
|
| 50 |
16 49
|
sseldd |
|
| 51 |
50
|
sqcld |
|
| 52 |
1 6
|
grpsubcl |
|
| 53 |
37 38 45 52
|
syl3anc |
|
| 54 |
1 5 4 7 8
|
cphnmcl |
|
| 55 |
17 53 54
|
syl2anc |
|
| 56 |
16 55
|
sseldd |
|
| 57 |
56
|
sqcld |
|
| 58 |
51 57
|
subcld |
|
| 59 |
36 58
|
mulcld |
|
| 60 |
34 59
|
addcld |
|
| 61 |
|
4cn |
|
| 62 |
61
|
a1i |
|
| 63 |
|
4ne0 |
|
| 64 |
63
|
a1i |
|
| 65 |
60 62 64
|
divcan2d |
|
| 66 |
10 65
|
eqtrd |
|