Metamath Proof Explorer


Theorem cphnmcl

Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses nmsq.v V=BaseW
nmsq.h ,˙=𝑖W
nmsq.n N=normW
cphnmcl.f F=ScalarW
cphnmcl.k K=BaseF
Assertion cphnmcl WCPreHilAVNAK

Proof

Step Hyp Ref Expression
1 nmsq.v V=BaseW
2 nmsq.h ,˙=𝑖W
3 nmsq.n N=normW
4 cphnmcl.f F=ScalarW
5 cphnmcl.k K=BaseF
6 1 2 3 4 5 cphnmf WCPreHilN:VK
7 6 ffvelcdmda WCPreHilAVNAK