Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
| nmsq.h | |- ., = ( .i ` W ) |
||
| nmsq.n | |- N = ( norm ` W ) |
||
| cphnmcl.f | |- F = ( Scalar ` W ) |
||
| cphnmcl.k | |- K = ( Base ` F ) |
||
| Assertion | cphnmcl | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | |- V = ( Base ` W ) |
|
| 2 | nmsq.h | |- ., = ( .i ` W ) |
|
| 3 | nmsq.n | |- N = ( norm ` W ) |
|
| 4 | cphnmcl.f | |- F = ( Scalar ` W ) |
|
| 5 | cphnmcl.k | |- K = ( Base ` F ) |
|
| 6 | 1 2 3 4 5 | cphnmf | |- ( W e. CPreHil -> N : V --> K ) |
| 7 | 6 | ffvelcdmda | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) e. K ) |