Description: Distributive law for inner product subtraction. Complex version of ip2subdi . (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphipcj.h | |
|
cphipcj.v | |
||
cphsubdir.m | |
||
cph2subdi.1 | |
||
cph2subdi.2 | |
||
cph2subdi.3 | |
||
cph2subdi.4 | |
||
cph2subdi.5 | |
||
Assertion | cph2subdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphipcj.h | |
|
2 | cphipcj.v | |
|
3 | cphsubdir.m | |
|
4 | cph2subdi.1 | |
|
5 | cph2subdi.2 | |
|
6 | cph2subdi.3 | |
|
7 | cph2subdi.4 | |
|
8 | cph2subdi.5 | |
|
9 | cphclm | |
|
10 | 4 9 | syl | |
11 | eqid | |
|
12 | 11 | clmadd | |
13 | 10 12 | syl | |
14 | 13 | oveqd | |
15 | 13 | oveqd | |
16 | 14 15 | oveq12d | |
17 | cphphl | |
|
18 | 4 17 | syl | |
19 | eqid | |
|
20 | 11 1 2 19 | ipcl | |
21 | 18 5 7 20 | syl3anc | |
22 | 11 1 2 19 | ipcl | |
23 | 18 6 8 22 | syl3anc | |
24 | 11 19 | clmacl | |
25 | 10 21 23 24 | syl3anc | |
26 | 11 1 2 19 | ipcl | |
27 | 18 5 8 26 | syl3anc | |
28 | 11 1 2 19 | ipcl | |
29 | 18 6 7 28 | syl3anc | |
30 | 11 19 | clmacl | |
31 | 10 27 29 30 | syl3anc | |
32 | 11 19 | clmsub | |
33 | 10 25 31 32 | syl3anc | |
34 | eqid | |
|
35 | eqid | |
|
36 | 11 1 2 3 34 35 18 5 6 7 8 | ip2subdi | |
37 | 16 33 36 | 3eqtr4rd | |