Metamath Proof Explorer


Theorem cph2subdi

Description: Distributive law for inner product subtraction. Complex version of ip2subdi . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h ,˙=𝑖W
cphipcj.v V=BaseW
cphsubdir.m -˙=-W
cph2subdi.1 φWCPreHil
cph2subdi.2 φAV
cph2subdi.3 φBV
cph2subdi.4 φCV
cph2subdi.5 φDV
Assertion cph2subdi φA-˙B,˙C-˙D=A,˙C+B,˙D-A,˙D+B,˙C

Proof

Step Hyp Ref Expression
1 cphipcj.h ,˙=𝑖W
2 cphipcj.v V=BaseW
3 cphsubdir.m -˙=-W
4 cph2subdi.1 φWCPreHil
5 cph2subdi.2 φAV
6 cph2subdi.3 φBV
7 cph2subdi.4 φCV
8 cph2subdi.5 φDV
9 cphclm WCPreHilWCMod
10 4 9 syl φWCMod
11 eqid ScalarW=ScalarW
12 11 clmadd WCMod+=+ScalarW
13 10 12 syl φ+=+ScalarW
14 13 oveqd φA,˙C+B,˙D=A,˙C+ScalarWB,˙D
15 13 oveqd φA,˙D+B,˙C=A,˙D+ScalarWB,˙C
16 14 15 oveq12d φA,˙C+B,˙D-ScalarWA,˙D+B,˙C=A,˙C+ScalarWB,˙D-ScalarWA,˙D+ScalarWB,˙C
17 cphphl WCPreHilWPreHil
18 4 17 syl φWPreHil
19 eqid BaseScalarW=BaseScalarW
20 11 1 2 19 ipcl WPreHilAVCVA,˙CBaseScalarW
21 18 5 7 20 syl3anc φA,˙CBaseScalarW
22 11 1 2 19 ipcl WPreHilBVDVB,˙DBaseScalarW
23 18 6 8 22 syl3anc φB,˙DBaseScalarW
24 11 19 clmacl WCModA,˙CBaseScalarWB,˙DBaseScalarWA,˙C+B,˙DBaseScalarW
25 10 21 23 24 syl3anc φA,˙C+B,˙DBaseScalarW
26 11 1 2 19 ipcl WPreHilAVDVA,˙DBaseScalarW
27 18 5 8 26 syl3anc φA,˙DBaseScalarW
28 11 1 2 19 ipcl WPreHilBVCVB,˙CBaseScalarW
29 18 6 7 28 syl3anc φB,˙CBaseScalarW
30 11 19 clmacl WCModA,˙DBaseScalarWB,˙CBaseScalarWA,˙D+B,˙CBaseScalarW
31 10 27 29 30 syl3anc φA,˙D+B,˙CBaseScalarW
32 11 19 clmsub WCModA,˙C+B,˙DBaseScalarWA,˙D+B,˙CBaseScalarWA,˙C+B,˙D-A,˙D+B,˙C=A,˙C+B,˙D-ScalarWA,˙D+B,˙C
33 10 25 31 32 syl3anc φA,˙C+B,˙D-A,˙D+B,˙C=A,˙C+B,˙D-ScalarWA,˙D+B,˙C
34 eqid -ScalarW=-ScalarW
35 eqid +ScalarW=+ScalarW
36 11 1 2 3 34 35 18 5 6 7 8 ip2subdi φA-˙B,˙C-˙D=A,˙C+ScalarWB,˙D-ScalarWA,˙D+ScalarWB,˙C
37 16 33 36 3eqtr4rd φA-˙B,˙C-˙D=A,˙C+B,˙D-A,˙D+B,˙C