| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  | 
						
							| 2 |  | cphipcj.v |  | 
						
							| 3 |  | cphsubdir.m |  | 
						
							| 4 |  | cph2subdi.1 |  | 
						
							| 5 |  | cph2subdi.2 |  | 
						
							| 6 |  | cph2subdi.3 |  | 
						
							| 7 |  | cph2subdi.4 |  | 
						
							| 8 |  | cph2subdi.5 |  | 
						
							| 9 |  | cphclm |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | clmadd |  | 
						
							| 13 | 10 12 | syl |  | 
						
							| 14 | 13 | oveqd |  | 
						
							| 15 | 13 | oveqd |  | 
						
							| 16 | 14 15 | oveq12d |  | 
						
							| 17 |  | cphphl |  | 
						
							| 18 | 4 17 | syl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 11 1 2 19 | ipcl |  | 
						
							| 21 | 18 5 7 20 | syl3anc |  | 
						
							| 22 | 11 1 2 19 | ipcl |  | 
						
							| 23 | 18 6 8 22 | syl3anc |  | 
						
							| 24 | 11 19 | clmacl |  | 
						
							| 25 | 10 21 23 24 | syl3anc |  | 
						
							| 26 | 11 1 2 19 | ipcl |  | 
						
							| 27 | 18 5 8 26 | syl3anc |  | 
						
							| 28 | 11 1 2 19 | ipcl |  | 
						
							| 29 | 18 6 7 28 | syl3anc |  | 
						
							| 30 | 11 19 | clmacl |  | 
						
							| 31 | 10 27 29 30 | syl3anc |  | 
						
							| 32 | 11 19 | clmsub |  | 
						
							| 33 | 10 25 31 32 | syl3anc |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 11 1 2 3 34 35 18 5 6 7 8 | ip2subdi |  | 
						
							| 37 | 16 33 36 | 3eqtr4rd |  |