| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
cphsubdir.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
cph2subdi.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
| 5 |
|
cph2subdi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
cph2subdi.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 7 |
|
cph2subdi.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
cph2subdi.5 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 9 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 12 |
11
|
clmadd |
⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 |
13
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ) |
| 15 |
13
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
| 16 |
14 15
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 17 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 20 |
11 1 2 19
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 21 |
18 5 7 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 22 |
11 1 2 19
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 |
18 6 8 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 24 |
11 19
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 25 |
10 21 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 26 |
11 1 2 19
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 27 |
18 5 8 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 28 |
11 1 2 19
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 29 |
18 6 7 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 30 |
11 19
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 31 |
10 27 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 |
11 19
|
clmsub |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| 33 |
10 25 31 32
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| 34 |
|
eqid |
⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) |
| 35 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 36 |
11 1 2 3 34 35 18 5 6 7 8
|
ip2subdi |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 37 |
16 33 36
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |