Metamath Proof Explorer


Theorem negeqi

Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995)

Ref Expression
Hypothesis negeqi.1 A=B
Assertion negeqi A=B

Proof

Step Hyp Ref Expression
1 negeqi.1 A=B
2 negeq A=BA=B
3 1 2 ax-mp A=B