Step |
Hyp |
Ref |
Expression |
1 |
|
cphipfval.x |
β’ π = ( Base β π ) |
2 |
|
cphipfval.p |
β’ + = ( +g β π ) |
3 |
|
cphipfval.s |
β’ Β· = ( Β·π β π ) |
4 |
|
cphipfval.n |
β’ π = ( norm β π ) |
5 |
|
cphipfval.i |
β’ , = ( Β·π β π ) |
6 |
|
cphipval2.m |
β’ β = ( -g β π ) |
7 |
|
cphipval2.f |
β’ πΉ = ( Scalar β π ) |
8 |
|
cphipval2.k |
β’ πΎ = ( Base β πΉ ) |
9 |
|
simpl |
β’ ( ( π β βPreHil β§ i β πΎ ) β π β βPreHil ) |
10 |
9
|
3ad2ant1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β π β βPreHil ) |
11 |
|
cphngp |
β’ ( π β βPreHil β π β NrmGrp ) |
12 |
11
|
adantr |
β’ ( ( π β βPreHil β§ i β πΎ ) β π β NrmGrp ) |
13 |
|
ngpgrp |
β’ ( π β NrmGrp β π β Grp ) |
14 |
12 13
|
syl |
β’ ( ( π β βPreHil β§ i β πΎ ) β π β Grp ) |
15 |
1 2
|
grpcl |
β’ ( ( π β Grp β§ π΄ β π β§ π΅ β π ) β ( π΄ + π΅ ) β π ) |
16 |
14 15
|
syl3an1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ + π΅ ) β π ) |
17 |
1 5 4
|
nmsq |
β’ ( ( π β βPreHil β§ ( π΄ + π΅ ) β π ) β ( ( π β ( π΄ + π΅ ) ) β 2 ) = ( ( π΄ + π΅ ) , ( π΄ + π΅ ) ) ) |
18 |
10 16 17
|
syl2anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ + π΅ ) ) β 2 ) = ( ( π΄ + π΅ ) , ( π΄ + π΅ ) ) ) |
19 |
|
simp2 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β π΄ β π ) |
20 |
|
simp3 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β π΅ β π ) |
21 |
5 1 2 10 19 20 19 20
|
cph2di |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ + π΅ ) , ( π΄ + π΅ ) ) = ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
22 |
18 21
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ + π΅ ) ) β 2 ) = ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
23 |
1 6
|
grpsubcl |
β’ ( ( π β Grp β§ π΄ β π β§ π΅ β π ) β ( π΄ β π΅ ) β π ) |
24 |
14 23
|
syl3an1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ β π΅ ) β π ) |
25 |
1 5 4
|
nmsq |
β’ ( ( π β βPreHil β§ ( π΄ β π΅ ) β π ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) = ( ( π΄ β π΅ ) , ( π΄ β π΅ ) ) ) |
26 |
10 24 25
|
syl2anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) = ( ( π΄ β π΅ ) , ( π΄ β π΅ ) ) ) |
27 |
5 1 6 10 19 20 19 20
|
cph2subdi |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ β π΅ ) , ( π΄ β π΅ ) ) = ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) β ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
28 |
26 27
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) = ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) β ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
29 |
22 28
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π β ( π΄ + π΅ ) ) β 2 ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) ) = ( ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) β ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) ) |
30 |
1 5
|
reipcl |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( π΄ , π΄ ) β β ) |
31 |
30
|
adantlr |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π ) β ( π΄ , π΄ ) β β ) |
32 |
31
|
recnd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π ) β ( π΄ , π΄ ) β β ) |
33 |
32
|
3adant3 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΄ ) β β ) |
34 |
1 5
|
reipcl |
β’ ( ( π β βPreHil β§ π΅ β π ) β ( π΅ , π΅ ) β β ) |
35 |
34
|
adantlr |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β ( π΅ , π΅ ) β β ) |
36 |
35
|
recnd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β ( π΅ , π΅ ) β β ) |
37 |
36
|
3adant2 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΅ , π΅ ) β β ) |
38 |
33 37
|
addcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) β β ) |
39 |
1 5
|
cphipcl |
β’ ( ( π β βPreHil β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) β β ) |
40 |
9 39
|
syl3an1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) β β ) |
41 |
1 5
|
cphipcl |
β’ ( ( π β βPreHil β§ π΅ β π β§ π΄ β π ) β ( π΅ , π΄ ) β β ) |
42 |
9 41
|
syl3an1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π β§ π΄ β π ) β ( π΅ , π΄ ) β β ) |
43 |
42
|
3com23 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΅ , π΄ ) β β ) |
44 |
40 43
|
addcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) β β ) |
45 |
38 44 44
|
pnncand |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( π΅ , π΅ ) ) β ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) = ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
46 |
29 45
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π β ( π΄ + π΅ ) ) β 2 ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) ) = ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) ) |
47 |
14
|
3ad2ant1 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β π β Grp ) |
48 |
|
cphlmod |
β’ ( π β βPreHil β π β LMod ) |
49 |
48
|
adantr |
β’ ( ( π β βPreHil β§ i β πΎ ) β π β LMod ) |
50 |
49
|
adantr |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β π β LMod ) |
51 |
|
simplr |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β i β πΎ ) |
52 |
|
simpr |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β π΅ β π ) |
53 |
1 7 3 8
|
lmodvscl |
β’ ( ( π β LMod β§ i β πΎ β§ π΅ β π ) β ( i Β· π΅ ) β π ) |
54 |
50 51 52 53
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΅ β π ) β ( i Β· π΅ ) β π ) |
55 |
54
|
3adant2 |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· π΅ ) β π ) |
56 |
1 2
|
grpcl |
β’ ( ( π β Grp β§ π΄ β π β§ ( i Β· π΅ ) β π ) β ( π΄ + ( i Β· π΅ ) ) β π ) |
57 |
47 19 55 56
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ + ( i Β· π΅ ) ) β π ) |
58 |
1 5 4
|
nmsq |
β’ ( ( π β βPreHil β§ ( π΄ + ( i Β· π΅ ) ) β π ) β ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) = ( ( π΄ + ( i Β· π΅ ) ) , ( π΄ + ( i Β· π΅ ) ) ) ) |
59 |
10 57 58
|
syl2anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) = ( ( π΄ + ( i Β· π΅ ) ) , ( π΄ + ( i Β· π΅ ) ) ) ) |
60 |
5 1 2 10 19 55 19 55
|
cph2di |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ + ( i Β· π΅ ) ) , ( π΄ + ( i Β· π΅ ) ) ) = ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) |
61 |
59 60
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) = ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) |
62 |
1 6
|
grpsubcl |
β’ ( ( π β Grp β§ π΄ β π β§ ( i Β· π΅ ) β π ) β ( π΄ β ( i Β· π΅ ) ) β π ) |
63 |
47 19 55 62
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ β ( i Β· π΅ ) ) β π ) |
64 |
1 5 4
|
nmsq |
β’ ( ( π β βPreHil β§ ( π΄ β ( i Β· π΅ ) ) β π ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) = ( ( π΄ β ( i Β· π΅ ) ) , ( π΄ β ( i Β· π΅ ) ) ) ) |
65 |
10 63 64
|
syl2anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) = ( ( π΄ β ( i Β· π΅ ) ) , ( π΄ β ( i Β· π΅ ) ) ) ) |
66 |
5 1 6 10 19 55 19 55
|
cph2subdi |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ β ( i Β· π΅ ) ) , ( π΄ β ( i Β· π΅ ) ) ) = ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) |
67 |
65 66
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) = ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) |
68 |
61 67
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) = ( ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) ) |
69 |
68
|
oveq2d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) ) = ( i Β· ( ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) ) ) |
70 |
1 5
|
cphipcl |
β’ ( ( π β βPreHil β§ ( i Β· π΅ ) β π β§ ( i Β· π΅ ) β π ) β ( ( i Β· π΅ ) , ( i Β· π΅ ) ) β β ) |
71 |
10 55 55 70
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· π΅ ) , ( i Β· π΅ ) ) β β ) |
72 |
33 71
|
addcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β β ) |
73 |
1 5
|
cphipcl |
β’ ( ( π β βPreHil β§ π΄ β π β§ ( i Β· π΅ ) β π ) β ( π΄ , ( i Β· π΅ ) ) β β ) |
74 |
10 19 55 73
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ , ( i Β· π΅ ) ) β β ) |
75 |
1 5
|
cphipcl |
β’ ( ( π β βPreHil β§ ( i Β· π΅ ) β π β§ π΄ β π ) β ( ( i Β· π΅ ) , π΄ ) β β ) |
76 |
10 55 19 75
|
syl3anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· π΅ ) , π΄ ) β β ) |
77 |
74 76
|
addcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) β β ) |
78 |
72 77 77
|
pnncand |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) = ( ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) |
79 |
78
|
oveq2d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) β ( ( ( π΄ , π΄ ) + ( ( i Β· π΅ ) , ( i Β· π΅ ) ) ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) ) = ( i Β· ( ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) ) |
80 |
1 3 5 7 8
|
cphassir |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ , ( i Β· π΅ ) ) = ( - i Β· ( π΄ , π΅ ) ) ) |
81 |
1 3 5 7 8
|
cphassi |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· π΅ ) , π΄ ) = ( i Β· ( π΅ , π΄ ) ) ) |
82 |
80 81
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) = ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) |
83 |
82 82
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) = ( ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) + ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) |
84 |
83
|
oveq2d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) = ( i Β· ( ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) + ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) ) |
85 |
|
ax-icn |
β’ i β β |
86 |
85
|
a1i |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β i β β ) |
87 |
|
negicn |
β’ - i β β |
88 |
87
|
a1i |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β - i β β ) |
89 |
88 40
|
mulcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( - i Β· ( π΄ , π΅ ) ) β β ) |
90 |
86 43
|
mulcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( π΅ , π΄ ) ) β β ) |
91 |
89 90
|
addcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) β β ) |
92 |
86 91 91
|
adddid |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) + ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) = ( ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) + ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) ) |
93 |
86 89 90
|
adddid |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) = ( ( i Β· ( - i Β· ( π΄ , π΅ ) ) ) + ( i Β· ( i Β· ( π΅ , π΄ ) ) ) ) ) |
94 |
86 88 40
|
mulassd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· - i ) Β· ( π΄ , π΅ ) ) = ( i Β· ( - i Β· ( π΄ , π΅ ) ) ) ) |
95 |
85 85
|
mulneg2i |
β’ ( i Β· - i ) = - ( i Β· i ) |
96 |
|
ixi |
β’ ( i Β· i ) = - 1 |
97 |
96
|
negeqi |
β’ - ( i Β· i ) = - - 1 |
98 |
|
negneg1e1 |
β’ - - 1 = 1 |
99 |
95 97 98
|
3eqtri |
β’ ( i Β· - i ) = 1 |
100 |
99
|
oveq1i |
β’ ( ( i Β· - i ) Β· ( π΄ , π΅ ) ) = ( 1 Β· ( π΄ , π΅ ) ) |
101 |
94 100
|
eqtr3di |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( - i Β· ( π΄ , π΅ ) ) ) = ( 1 Β· ( π΄ , π΅ ) ) ) |
102 |
86 86 43
|
mulassd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· i ) Β· ( π΅ , π΄ ) ) = ( i Β· ( i Β· ( π΅ , π΄ ) ) ) ) |
103 |
96
|
oveq1i |
β’ ( ( i Β· i ) Β· ( π΅ , π΄ ) ) = ( - 1 Β· ( π΅ , π΄ ) ) |
104 |
102 103
|
eqtr3di |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( i Β· ( π΅ , π΄ ) ) ) = ( - 1 Β· ( π΅ , π΄ ) ) ) |
105 |
101 104
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· ( - i Β· ( π΄ , π΅ ) ) ) + ( i Β· ( i Β· ( π΅ , π΄ ) ) ) ) = ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) ) |
106 |
93 105
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) = ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) ) |
107 |
106 106
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) + ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) = ( ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) + ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) ) ) |
108 |
40
|
mullidd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( 1 Β· ( π΄ , π΅ ) ) = ( π΄ , π΅ ) ) |
109 |
108
|
oveq1d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) = ( ( π΄ , π΅ ) + ( - 1 Β· ( π΅ , π΄ ) ) ) ) |
110 |
|
addneg1mul |
β’ ( ( ( π΄ , π΅ ) β β β§ ( π΅ , π΄ ) β β ) β ( ( π΄ , π΅ ) + ( - 1 Β· ( π΅ , π΄ ) ) ) = ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) |
111 |
40 43 110
|
syl2anc |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΅ ) + ( - 1 Β· ( π΅ , π΄ ) ) ) = ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) |
112 |
109 111
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) = ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) |
113 |
112 112
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) + ( ( 1 Β· ( π΄ , π΅ ) ) + ( - 1 Β· ( π΅ , π΄ ) ) ) ) = ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) |
114 |
107 113
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) + ( i Β· ( ( - i Β· ( π΄ , π΅ ) ) + ( i Β· ( π΅ , π΄ ) ) ) ) ) = ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) |
115 |
84 92 114
|
3eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) + ( ( π΄ , ( i Β· π΅ ) ) + ( ( i Β· π΅ ) , π΄ ) ) ) ) = ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) |
116 |
69 79 115
|
3eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( i Β· ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) ) = ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) |
117 |
46 116
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π β ( π΄ + π΅ ) ) β 2 ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) ) + ( i Β· ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) ) ) = ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) ) |
118 |
117
|
oveq1d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( ( π β ( π΄ + π΅ ) ) β 2 ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) ) + ( i Β· ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) ) ) / 4 ) = ( ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) / 4 ) ) |
119 |
40 43
|
subcld |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) β β ) |
120 |
44 44 119 119
|
add4d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) = ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) ) |
121 |
40 43 40
|
ppncand |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) = ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) |
122 |
121 121
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) = ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) ) |
123 |
120 122
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) = ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) ) |
124 |
123
|
oveq1d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) + ( π΅ , π΄ ) ) ) + ( ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) + ( ( π΄ , π΅ ) β ( π΅ , π΄ ) ) ) ) / 4 ) = ( ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) / 4 ) ) |
125 |
40
|
2timesd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( 2 Β· ( π΄ , π΅ ) ) = ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) |
126 |
125
|
eqcomd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) = ( 2 Β· ( π΄ , π΅ ) ) ) |
127 |
126 126
|
oveq12d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) = ( ( 2 Β· ( π΄ , π΅ ) ) + ( 2 Β· ( π΄ , π΅ ) ) ) ) |
128 |
|
2cnd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β 2 β β ) |
129 |
128 128 40
|
adddird |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( 2 + 2 ) Β· ( π΄ , π΅ ) ) = ( ( 2 Β· ( π΄ , π΅ ) ) + ( 2 Β· ( π΄ , π΅ ) ) ) ) |
130 |
|
2p2e4 |
β’ ( 2 + 2 ) = 4 |
131 |
130
|
a1i |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( 2 + 2 ) = 4 ) |
132 |
131
|
oveq1d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( 2 + 2 ) Β· ( π΄ , π΅ ) ) = ( 4 Β· ( π΄ , π΅ ) ) ) |
133 |
127 129 132
|
3eqtr2d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) = ( 4 Β· ( π΄ , π΅ ) ) ) |
134 |
133
|
oveq1d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) / 4 ) = ( ( 4 Β· ( π΄ , π΅ ) ) / 4 ) ) |
135 |
|
4cn |
β’ 4 β β |
136 |
135
|
a1i |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β 4 β β ) |
137 |
|
4ne0 |
β’ 4 β 0 |
138 |
137
|
a1i |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β 4 β 0 ) |
139 |
40 136 138
|
divcan3d |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( 4 Β· ( π΄ , π΅ ) ) / 4 ) = ( π΄ , π΅ ) ) |
140 |
134 139
|
eqtrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( ( ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) + ( ( π΄ , π΅ ) + ( π΄ , π΅ ) ) ) / 4 ) = ( π΄ , π΅ ) ) |
141 |
118 124 140
|
3eqtrrd |
β’ ( ( ( π β βPreHil β§ i β πΎ ) β§ π΄ β π β§ π΅ β π ) β ( π΄ , π΅ ) = ( ( ( ( ( π β ( π΄ + π΅ ) ) β 2 ) β ( ( π β ( π΄ β π΅ ) ) β 2 ) ) + ( i Β· ( ( ( π β ( π΄ + ( i Β· π΅ ) ) ) β 2 ) β ( ( π β ( π΄ β ( i Β· π΅ ) ) ) β 2 ) ) ) ) / 4 ) ) |