| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reipcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
reipcl.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 4 |
1 2 3
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 5 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
| 6 |
1 3
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
5 6
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
resqcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 9 |
4 8
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℝ ) |