Step |
Hyp |
Ref |
Expression |
1 |
|
reipcl.v |
β’ π = ( Base β π ) |
2 |
|
reipcl.h |
β’ , = ( Β·π β π ) |
3 |
|
eqid |
β’ ( norm β π ) = ( norm β π ) |
4 |
1 2 3
|
nmsq |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( ( ( norm β π ) β π΄ ) β 2 ) = ( π΄ , π΄ ) ) |
5 |
|
cphngp |
β’ ( π β βPreHil β π β NrmGrp ) |
6 |
1 3
|
nmcl |
β’ ( ( π β NrmGrp β§ π΄ β π ) β ( ( norm β π ) β π΄ ) β β ) |
7 |
5 6
|
sylan |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( ( norm β π ) β π΄ ) β β ) |
8 |
7
|
resqcld |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( ( ( norm β π ) β π΄ ) β 2 ) β β ) |
9 |
4 8
|
eqeltrrd |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( π΄ , π΄ ) β β ) |