Description: A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) | |
| divcld.2 | |- ( ph -> B e. CC ) | ||
| divcld.3 | |- ( ph -> B =/= 0 ) | ||
| Assertion | divcan3d | |- ( ph -> ( ( B x. A ) / B ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) | |
| 2 | divcld.2 | |- ( ph -> B e. CC ) | |
| 3 | divcld.3 | |- ( ph -> B =/= 0 ) | |
| 4 | divcan3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) | |
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( B x. A ) / B ) = A ) |