Metamath Proof Explorer


Theorem nmpar

Description: A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmpar.v 𝑉 = ( Base ‘ 𝑊 )
nmpar.p + = ( +g𝑊 )
nmpar.m = ( -g𝑊 )
nmpar.n 𝑁 = ( norm ‘ 𝑊 )
Assertion nmpar ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 nmpar.v 𝑉 = ( Base ‘ 𝑊 )
2 nmpar.p + = ( +g𝑊 )
3 nmpar.m = ( -g𝑊 )
4 nmpar.n 𝑁 = ( norm ‘ 𝑊 )
5 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
8 simp1 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → 𝑊 ∈ ℂPreHil )
9 simp2 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → 𝐴𝑉 )
10 simp3 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → 𝐵𝑉 )
11 1 2 3 4 5 6 7 8 9 10 nmparlem ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁𝐴 ) ↑ 2 ) + ( ( 𝑁𝐵 ) ↑ 2 ) ) ) )