| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmpar.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
nmpar.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
nmpar.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
nmpar.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 8 |
|
simp1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) |
| 9 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 10 |
|
simp3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
nmparlem |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |