Metamath Proof Explorer


Theorem sqrtcld

Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1
|- ( ph -> A e. CC )
Assertion sqrtcld
|- ( ph -> ( sqrt ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 sqrtcl
 |-  ( A e. CC -> ( sqrt ` A ) e. CC )
3 1 2 syl
 |-  ( ph -> ( sqrt ` A ) e. CC )