Metamath Proof Explorer


Theorem sqrtcld

Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion sqrtcld ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 abscld.1 ( 𝜑𝐴 ∈ ℂ )
2 sqrtcl ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ )
3 1 2 syl ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℂ )