| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 6 |
|
tcphcph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 7 |
|
tcphcph.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) |
| 8 |
|
tcphcph.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 9 |
|
tcphcph.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 10 |
|
tcphcph.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 11 |
|
tcphcphlem1.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
tcphcphlem1.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 13 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 14 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 15 |
4 13 14
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 16 |
2 10
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 17 |
15 11 12 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 18 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 − 𝑌 ) ∈ 𝑉 ) → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℝ ) |
| 19 |
17 18
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℝ ) |
| 20 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 21 |
11 20
|
mpdan |
⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 22 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 23 |
12 22
|
mpdan |
⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 24 |
21 23
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 25 |
1 2 3 4 5
|
phclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 26 |
3 9
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 28 |
3 6 2 9
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 29 |
4 11 12 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 30 |
27 29
|
sseldd |
⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 31 |
3 6 2 9
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 32 |
4 12 11 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 33 |
27 32
|
sseldd |
⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ ℂ ) |
| 34 |
30 33
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ ℂ ) |
| 35 |
34
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ∈ ℝ ) |
| 36 |
24 35
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ∈ ℝ ) |
| 37 |
21
|
recnd |
⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 38 |
|
2re |
⊢ 2 ∈ ℝ |
| 39 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
| 40 |
39
|
anidms |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑋 , 𝑋 ) ) ) |
| 42 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 43 |
41 42 11
|
rspcdva |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 , 𝑋 ) ) |
| 44 |
21 43
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℝ ) |
| 45 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑥 = 𝑌 ) → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
| 46 |
45
|
anidms |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
| 47 |
46
|
breq2d |
⊢ ( 𝑥 = 𝑌 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑌 , 𝑌 ) ) ) |
| 48 |
47 42 12
|
rspcdva |
⊢ ( 𝜑 → 0 ≤ ( 𝑌 , 𝑌 ) ) |
| 49 |
23 48
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 50 |
44 49
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) |
| 51 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℝ ) |
| 52 |
38 50 51
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℝ ) |
| 53 |
52
|
recnd |
⊢ ( 𝜑 → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℂ ) |
| 54 |
23
|
recnd |
⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
| 55 |
37 53 54
|
add32d |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 56 |
24 52
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ∈ ℝ ) |
| 57 |
55 56
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 58 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑋 − 𝑌 ) ∧ 𝑥 = ( 𝑋 − 𝑌 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 59 |
58
|
anidms |
⊢ ( 𝑥 = ( 𝑋 − 𝑌 ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑥 = ( 𝑋 − 𝑌 ) → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ) |
| 61 |
60 42 17
|
rspcdva |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 62 |
19 61
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 63 |
3
|
clmadd |
⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ 𝐹 ) ) |
| 64 |
25 63
|
syl |
⊢ ( 𝜑 → + = ( +g ‘ 𝐹 ) ) |
| 65 |
64
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
| 66 |
64
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) = ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) |
| 67 |
65 66
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) ) |
| 68 |
3 6 2 9
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 69 |
4 11 11 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 70 |
3 6 2 9
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 71 |
4 12 12 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 72 |
3 9
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑋 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑌 ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 73 |
25 69 71 72
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 74 |
3 9
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑌 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑋 ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 75 |
25 29 32 74
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 76 |
3 9
|
clmsub |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ∧ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 77 |
25 73 75 76
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 78 |
|
eqid |
⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) |
| 79 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 80 |
3 6 2 10 78 79 4 11 12 11 12
|
ip2subdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) ) |
| 81 |
67 77 80
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) = ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 83 |
62 82
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 84 |
27 73
|
sseldd |
⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ ℂ ) |
| 85 |
84 34
|
abs2dif2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 86 |
83 85
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 87 |
21 23 43 48
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) |
| 88 |
24 87
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) = ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) |
| 89 |
88
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 90 |
86 89
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 91 |
30
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ) |
| 92 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ) → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) |
| 93 |
38 91 92
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) |
| 94 |
30 33
|
abstrid |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 95 |
91
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℂ ) |
| 96 |
95
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ) |
| 97 |
30
|
abscjd |
⊢ ( 𝜑 → ( abs ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( abs ‘ ( 𝑋 , 𝑌 ) ) ) |
| 98 |
3
|
clmcj |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 99 |
25 98
|
syl |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 100 |
99
|
fveq1d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) ) |
| 101 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
| 102 |
3 6 2 101
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 103 |
4 11 12 102
|
syl3anc |
⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 104 |
100 103
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 105 |
104
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( abs ‘ ( 𝑌 , 𝑋 ) ) ) |
| 106 |
97 105
|
eqtr3d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) = ( abs ‘ ( 𝑌 , 𝑋 ) ) ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 108 |
96 107
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 109 |
94 108
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ) |
| 110 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 111 |
|
eqid |
⊢ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) |
| 112 |
1 2 3 4 5 6 7 8 9 110 111 11 12
|
ipcau2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 113 |
1 110 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 114 |
15 11 113
|
syl2anc |
⊢ ( 𝜑 → ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 115 |
1 110 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 116 |
15 12 115
|
syl2anc |
⊢ ( 𝜑 → ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 117 |
114 116
|
oveq12d |
⊢ ( 𝜑 → ( ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 118 |
112 117
|
breqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 119 |
38
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 120 |
|
2pos |
⊢ 0 < 2 |
| 121 |
120
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 122 |
|
lemul2 |
⊢ ( ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ∧ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 123 |
91 50 119 121 122
|
syl112anc |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 124 |
118 123
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) |
| 125 |
35 93 52 109 124
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) |
| 126 |
35 52 24 125
|
leadd2dd |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 127 |
126 55
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 128 |
19 36 57 90 127
|
letrd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 129 |
19
|
recnd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℂ ) |
| 130 |
129
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 131 |
37
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℂ ) |
| 132 |
49
|
recnd |
⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℂ ) |
| 133 |
|
binom2 |
⊢ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℂ ∧ ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℂ ) → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) ) |
| 134 |
131 132 133
|
syl2anc |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) ) |
| 135 |
37
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) = ( 𝑋 , 𝑋 ) ) |
| 136 |
135
|
oveq1d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) = ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 137 |
54
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) = ( 𝑌 , 𝑌 ) ) |
| 138 |
136 137
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 139 |
134 138
|
eqtrd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 140 |
128 130 139
|
3brtr4d |
⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) |
| 141 |
19 61
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ∈ ℝ ) |
| 142 |
44 49
|
readdcld |
⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) |
| 143 |
19 61
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ) |
| 144 |
21 43
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 145 |
23 48
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 146 |
44 49 144 145
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 147 |
141 142 143 146
|
le2sqd |
⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) ) |
| 148 |
140 147
|
mpbird |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |