Metamath Proof Explorer


Theorem add32d

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1 ( 𝜑𝐴 ∈ ℂ )
addd.2 ( 𝜑𝐵 ∈ ℂ )
addd.3 ( 𝜑𝐶 ∈ ℂ )
Assertion add32d ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 addd.1 ( 𝜑𝐴 ∈ ℂ )
2 addd.2 ( 𝜑𝐵 ∈ ℂ )
3 addd.3 ( 𝜑𝐶 ∈ ℂ )
4 add32 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )