Metamath Proof Explorer
Description: Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
addd.1 |
|
|
|
addd.2 |
|
|
|
addd.3 |
|
|
Assertion |
add32d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addd.1 |
|
| 2 |
|
addd.2 |
|
| 3 |
|
addd.3 |
|
| 4 |
|
add32 |
|
| 5 |
1 2 3 4
|
syl3anc |
|