| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 4 |
1 3
|
tcphbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) |
| 5 |
4
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) ) |
| 6 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 7 |
1 6
|
tchplusg |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) ) |
| 9 |
8
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 10 |
|
eqidd |
⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 12 |
1 11
|
tcphsca |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) |
| 13 |
12
|
a1i |
⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 16 |
1 15
|
tcphvsca |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
| 17 |
16
|
a1i |
⊢ ( ⊤ → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) ) |
| 18 |
17
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ) |
| 19 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 20 |
1 19
|
tcphip |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) |
| 21 |
20
|
a1i |
⊢ ( ⊤ → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) ) |
| 22 |
21
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐺 ) 𝑦 ) ) |
| 23 |
2 5 9 10 13 14 18 22
|
phlpropd |
⊢ ( ⊤ → ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) ) |
| 24 |
23
|
mptru |
⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |