Metamath Proof Explorer


Theorem tcphip

Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphip.s ·˙=𝑖W
Assertion tcphip ·˙=𝑖G

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphip.s ·˙=𝑖W
3 eqid BaseW=BaseW
4 3 tcphex xBaseWx·˙xV
5 1 3 2 tcphval G=WtoNrmGrpxBaseWx·˙x
6 5 2 tngip xBaseWx·˙xV·˙=𝑖G
7 4 6 ax-mp ·˙=𝑖G