Metamath Proof Explorer


Theorem cnnrg

Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion cnnrg fldNrmRing

Proof

Step Hyp Ref Expression
1 cnngp fldNrmGrp
2 absabv absAbsValfld
3 cnfldnm abs=normfld
4 eqid AbsValfld=AbsValfld
5 3 4 isnrg fldNrmRingfldNrmGrpabsAbsValfld
6 1 2 5 mpbir2an fldNrmRing