| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 5 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 6 |
|
eqid |
|- ( Scalar ` ( RRfld freeLMod I ) ) = ( Scalar ` ( RRfld freeLMod I ) ) |
| 7 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 8 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 9 |
|
remulr |
|- x. = ( .r ` RRfld ) |
| 10 |
|
eqid |
|- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
| 11 |
|
eqid |
|- ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( RRfld freeLMod I ) ) |
| 12 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
| 13 |
|
refldcj |
|- * = ( *r ` RRfld ) |
| 14 |
|
refld |
|- RRfld e. Field |
| 15 |
14
|
a1i |
|- ( I e. V -> RRfld e. Field ) |
| 16 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( x e. I |-> 0 ) |
| 17 |
7 8 5
|
frlmbasf |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f : I --> RR ) |
| 18 |
17
|
ffnd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f Fn I ) |
| 19 |
18
|
3adant3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f Fn I ) |
| 20 |
|
simpl |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> I e. V ) |
| 21 |
14
|
a1i |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> RRfld e. Field ) |
| 22 |
|
simpr |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 23 |
7 8 9 5 10
|
frlmipval |
|- ( ( ( I e. V /\ RRfld e. Field ) /\ ( f e. ( Base ` ( RRfld freeLMod I ) ) /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( f oF x. f ) ) ) |
| 24 |
20 21 22 22 23
|
syl22anc |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( f oF x. f ) ) ) |
| 25 |
|
inidm |
|- ( I i^i I ) = I |
| 26 |
|
eqidd |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) |
| 27 |
18 18 20 20 25 26 26
|
offval |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) = ( x e. I |-> ( ( f ` x ) x. ( f ` x ) ) ) ) |
| 28 |
17
|
ffvelcdmda |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 29 |
28 28
|
remulcld |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( ( f ` x ) x. ( f ` x ) ) e. RR ) |
| 30 |
27 29
|
fmpt3d |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) : I --> RR ) |
| 31 |
|
ovexd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) e. _V ) |
| 32 |
30
|
ffund |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> Fun ( f oF x. f ) ) |
| 33 |
7 12 5
|
frlmbasfsupp |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f finSupp 0 ) |
| 34 |
|
0red |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 e. RR ) |
| 35 |
|
simpr |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> x e. RR ) |
| 36 |
35
|
recnd |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> x e. CC ) |
| 37 |
36
|
mul02d |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 38 |
20 34 17 17 37
|
suppofss1d |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) C_ ( f supp 0 ) ) |
| 39 |
|
fsuppsssupp |
|- ( ( ( ( f oF x. f ) e. _V /\ Fun ( f oF x. f ) ) /\ ( f finSupp 0 /\ ( ( f oF x. f ) supp 0 ) C_ ( f supp 0 ) ) ) -> ( f oF x. f ) finSupp 0 ) |
| 40 |
31 32 33 38 39
|
syl22anc |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f oF x. f ) finSupp 0 ) |
| 41 |
|
regsumsupp |
|- ( ( ( f oF x. f ) : I --> RR /\ ( f oF x. f ) finSupp 0 /\ I e. V ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) ) |
| 42 |
30 40 20 41
|
syl3anc |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) ) |
| 43 |
|
suppssdm |
|- ( f supp 0 ) C_ dom f |
| 44 |
43 17
|
fssdm |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f supp 0 ) C_ I ) |
| 45 |
38 44
|
sstrd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) C_ I ) |
| 46 |
45
|
sselda |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> x e. I ) |
| 47 |
18 18 20 20 25 26 26
|
ofval |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 48 |
46 47
|
syldan |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 49 |
48
|
sumeq2dv |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f oF x. f ) ` x ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 50 |
42 49
|
eqtrd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( RRfld gsum ( f oF x. f ) ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 51 |
24 50
|
eqtrd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 52 |
51
|
3adant3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 53 |
|
simp3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) |
| 54 |
52 53
|
eqtr3d |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 55 |
33
|
fsuppimpd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( f supp 0 ) e. Fin ) |
| 56 |
55 38
|
ssfid |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( f oF x. f ) supp 0 ) e. Fin ) |
| 57 |
46 29
|
syldan |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) e. RR ) |
| 58 |
28
|
msqge0d |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. I ) -> 0 <_ ( ( f ` x ) x. ( f ` x ) ) ) |
| 59 |
46 58
|
syldan |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> 0 <_ ( ( f ` x ) x. ( f ` x ) ) ) |
| 60 |
56 57 59
|
fsum00 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 <-> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 61 |
60
|
3adant3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 <-> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 62 |
54 61
|
mpbid |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> A. x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 63 |
62
|
r19.21bi |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 64 |
63
|
adantlr |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) x. ( f ` x ) ) = 0 ) |
| 65 |
28
|
3adantl3 |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 66 |
65
|
recnd |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 67 |
66 66
|
mul0ord |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f ` x ) x. ( f ` x ) ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( ( f ` x ) x. ( f ` x ) ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 69 |
64 68
|
mpbid |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) |
| 70 |
|
oridm |
|- ( ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) <-> ( f ` x ) = 0 ) |
| 71 |
69 70
|
sylib |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( ( f oF x. f ) supp 0 ) ) -> ( f ` x ) = 0 ) |
| 72 |
30
|
3adant3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( f oF x. f ) : I --> RR ) |
| 73 |
72
|
adantr |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f oF x. f ) : I --> RR ) |
| 74 |
|
ssidd |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( f oF x. f ) supp 0 ) C_ ( ( f oF x. f ) supp 0 ) ) |
| 75 |
|
simpl1 |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> I e. V ) |
| 76 |
|
0red |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> 0 e. RR ) |
| 77 |
73 74 75 76
|
suppssr |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) -> ( ( f oF x. f ) ` x ) = 0 ) |
| 78 |
47
|
3adantl3 |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( f oF x. f ) ` x ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 79 |
78
|
eqeq1d |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( ( f ` x ) x. ( f ` x ) ) = 0 ) ) |
| 80 |
79 67
|
bitrd |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( ( f ` x ) = 0 \/ ( f ` x ) = 0 ) ) ) |
| 81 |
80 70
|
bitrdi |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( ( ( f oF x. f ) ` x ) = 0 <-> ( f ` x ) = 0 ) ) |
| 82 |
81
|
biimpa |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ ( ( f oF x. f ) ` x ) = 0 ) -> ( f ` x ) = 0 ) |
| 83 |
77 82
|
syldan |
|- ( ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) /\ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) -> ( f ` x ) = 0 ) |
| 84 |
|
undif |
|- ( ( ( f oF x. f ) supp 0 ) C_ I <-> ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) = I ) |
| 85 |
45 84
|
sylib |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) = I ) |
| 86 |
85
|
eleq2d |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> x e. I ) ) |
| 87 |
86
|
3adant3 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> x e. I ) ) |
| 88 |
87
|
biimpar |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
| 89 |
|
elun |
|- ( x e. ( ( ( f oF x. f ) supp 0 ) u. ( I \ ( ( f oF x. f ) supp 0 ) ) ) <-> ( x e. ( ( f oF x. f ) supp 0 ) \/ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
| 90 |
88 89
|
sylib |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( x e. ( ( f oF x. f ) supp 0 ) \/ x e. ( I \ ( ( f oF x. f ) supp 0 ) ) ) ) |
| 91 |
71 83 90
|
mpjaodan |
|- ( ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) /\ x e. I ) -> ( f ` x ) = 0 ) |
| 92 |
91
|
ralrimiva |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> A. x e. I ( f ` x ) = 0 ) |
| 93 |
|
fconstfv |
|- ( f : I --> { 0 } <-> ( f Fn I /\ A. x e. I ( f ` x ) = 0 ) ) |
| 94 |
|
c0ex |
|- 0 e. _V |
| 95 |
94
|
fconst2 |
|- ( f : I --> { 0 } <-> f = ( I X. { 0 } ) ) |
| 96 |
93 95
|
sylbb1 |
|- ( ( f Fn I /\ A. x e. I ( f ` x ) = 0 ) -> f = ( I X. { 0 } ) ) |
| 97 |
19 92 96
|
syl2anc |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f = ( I X. { 0 } ) ) |
| 98 |
|
isfld |
|- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
| 99 |
14 98
|
mpbi |
|- ( RRfld e. DivRing /\ RRfld e. CRing ) |
| 100 |
99
|
simpli |
|- RRfld e. DivRing |
| 101 |
|
drngring |
|- ( RRfld e. DivRing -> RRfld e. Ring ) |
| 102 |
100 101
|
ax-mp |
|- RRfld e. Ring |
| 103 |
7 12
|
frlm0 |
|- ( ( RRfld e. Ring /\ I e. V ) -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 104 |
102 103
|
mpan |
|- ( I e. V -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 105 |
104 16
|
eqtr3di |
|- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = ( x e. I |-> 0 ) ) |
| 106 |
105
|
3ad2ant1 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> ( 0g ` ( RRfld freeLMod I ) ) = ( x e. I |-> 0 ) ) |
| 107 |
16 97 106
|
3eqtr4a |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) /\ ( f ( .i ` ( RRfld freeLMod I ) ) f ) = 0 ) -> f = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 108 |
|
cjre |
|- ( x e. RR -> ( * ` x ) = x ) |
| 109 |
108
|
adantl |
|- ( ( I e. V /\ x e. RR ) -> ( * ` x ) = x ) |
| 110 |
|
id |
|- ( I e. V -> I e. V ) |
| 111 |
7 8 9 5 10 11 12 13 15 107 109 110
|
frlmphl |
|- ( I e. V -> ( RRfld freeLMod I ) e. PreHil ) |
| 112 |
7
|
frlmsca |
|- ( ( RRfld e. Field /\ I e. V ) -> RRfld = ( Scalar ` ( RRfld freeLMod I ) ) ) |
| 113 |
14 112
|
mpan |
|- ( I e. V -> RRfld = ( Scalar ` ( RRfld freeLMod I ) ) ) |
| 114 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 115 |
113 114
|
eqtr3di |
|- ( I e. V -> ( Scalar ` ( RRfld freeLMod I ) ) = ( CCfld |`s RR ) ) |
| 116 |
|
simpr1 |
|- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> f e. RR ) |
| 117 |
|
simpr3 |
|- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> 0 <_ f ) |
| 118 |
116 117
|
resqrtcld |
|- ( ( I e. V /\ ( f e. RR /\ f e. RR /\ 0 <_ f ) ) -> ( sqrt ` f ) e. RR ) |
| 119 |
56 57 59
|
fsumge0 |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ sum_ x e. ( ( f oF x. f ) supp 0 ) ( ( f ` x ) x. ( f ` x ) ) ) |
| 120 |
119 50
|
breqtrrd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ ( RRfld gsum ( f oF x. f ) ) ) |
| 121 |
120 24
|
breqtrrd |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> 0 <_ ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) |
| 122 |
4 5 6 111 115 10 118 121
|
tcphcph |
|- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) e. CPreHil ) |
| 123 |
3 122
|
eqeltrd |
|- ( I e. V -> H e. CPreHil ) |