Step |
Hyp |
Ref |
Expression |
1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
2 |
|
frlmbasfsupp.z |
|- .0. = ( 0g ` R ) |
3 |
|
frlmbasfsupp.b |
|- B = ( Base ` F ) |
4 |
|
simpr |
|- ( ( I e. W /\ X e. B ) -> X e. B ) |
5 |
1 3
|
frlmrcl |
|- ( X e. B -> R e. _V ) |
6 |
|
simpl |
|- ( ( I e. W /\ X e. B ) -> I e. W ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
1 7 2 3
|
frlmelbas |
|- ( ( R e. _V /\ I e. W ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) |
9 |
5 6 8
|
syl2an2 |
|- ( ( I e. W /\ X e. B ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) |
10 |
4 9
|
mpbid |
|- ( ( I e. W /\ X e. B ) -> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) |
11 |
10
|
simprd |
|- ( ( I e. W /\ X e. B ) -> X finSupp .0. ) |