Metamath Proof Explorer


Theorem rrxcph

Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
Assertion rrxcph I V H CPreHil

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 1 rrxval I V H = toCPreHil fld freeLMod I
4 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
5 eqid Base fld freeLMod I = Base fld freeLMod I
6 eqid Scalar fld freeLMod I = Scalar fld freeLMod I
7 eqid fld freeLMod I = fld freeLMod I
8 rebase = Base fld
9 remulr × = fld
10 eqid 𝑖 fld freeLMod I = 𝑖 fld freeLMod I
11 eqid 0 fld freeLMod I = 0 fld freeLMod I
12 re0g 0 = 0 fld
13 refldcj * = * fld
14 refld fld Field
15 14 a1i I V fld Field
16 fconstmpt I × 0 = x I 0
17 7 8 5 frlmbasf I V f Base fld freeLMod I f : I
18 17 ffnd I V f Base fld freeLMod I f Fn I
19 18 3adant3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f Fn I
20 simpl I V f Base fld freeLMod I I V
21 14 a1i I V f Base fld freeLMod I fld Field
22 simpr I V f Base fld freeLMod I f Base fld freeLMod I
23 7 8 9 5 10 frlmipval I V fld Field f Base fld freeLMod I f Base fld freeLMod I f 𝑖 fld freeLMod I f = fld f × f f
24 20 21 22 22 23 syl22anc I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = fld f × f f
25 inidm I I = I
26 eqidd I V f Base fld freeLMod I x I f x = f x
27 18 18 20 20 25 26 26 offval I V f Base fld freeLMod I f × f f = x I f x f x
28 17 ffvelrnda I V f Base fld freeLMod I x I f x
29 28 28 remulcld I V f Base fld freeLMod I x I f x f x
30 27 29 fmpt3d I V f Base fld freeLMod I f × f f : I
31 ovexd I V f Base fld freeLMod I f × f f V
32 30 ffund I V f Base fld freeLMod I Fun f × f f
33 7 12 5 frlmbasfsupp I V f Base fld freeLMod I finSupp 0 f
34 0red I V f Base fld freeLMod I 0
35 simpr I V f Base fld freeLMod I x x
36 35 recnd I V f Base fld freeLMod I x x
37 36 mul02d I V f Base fld freeLMod I x 0 x = 0
38 20 34 17 17 37 suppofss1d I V f Base fld freeLMod I f × f f supp 0 f supp 0
39 fsuppsssupp f × f f V Fun f × f f finSupp 0 f f × f f supp 0 f supp 0 finSupp 0 f × f f
40 31 32 33 38 39 syl22anc I V f Base fld freeLMod I finSupp 0 f × f f
41 regsumsupp f × f f : I finSupp 0 f × f f I V fld f × f f = x f × f f supp 0 f × f f x
42 30 40 20 41 syl3anc I V f Base fld freeLMod I fld f × f f = x f × f f supp 0 f × f f x
43 suppssdm f supp 0 dom f
44 43 17 fssdm I V f Base fld freeLMod I f supp 0 I
45 38 44 sstrd I V f Base fld freeLMod I f × f f supp 0 I
46 45 sselda I V f Base fld freeLMod I x supp 0 f × f f x I
47 18 18 20 20 25 26 26 ofval I V f Base fld freeLMod I x I f × f f x = f x f x
48 46 47 syldan I V f Base fld freeLMod I x supp 0 f × f f f × f f x = f x f x
49 48 sumeq2dv I V f Base fld freeLMod I x f × f f supp 0 f × f f x = x f × f f supp 0 f x f x
50 42 49 eqtrd I V f Base fld freeLMod I fld f × f f = x f × f f supp 0 f x f x
51 24 50 eqtrd I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = x f × f f supp 0 f x f x
52 51 3adant3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f 𝑖 fld freeLMod I f = x f × f f supp 0 f x f x
53 simp3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f 𝑖 fld freeLMod I f = 0
54 52 53 eqtr3d I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x f × f f supp 0 f x f x = 0
55 33 fsuppimpd I V f Base fld freeLMod I f supp 0 Fin
56 55 38 ssfid I V f Base fld freeLMod I f × f f supp 0 Fin
57 46 29 syldan I V f Base fld freeLMod I x supp 0 f × f f f x f x
58 28 msqge0d I V f Base fld freeLMod I x I 0 f x f x
59 46 58 syldan I V f Base fld freeLMod I x supp 0 f × f f 0 f x f x
60 56 57 59 fsum00 I V f Base fld freeLMod I x f × f f supp 0 f x f x = 0 x supp 0 f × f f f x f x = 0
61 60 3adant3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x f × f f supp 0 f x f x = 0 x supp 0 f × f f f x f x = 0
62 54 61 mpbid I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x supp 0 f × f f f x f x = 0
63 62 r19.21bi I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x supp 0 f × f f f x f x = 0
64 63 adantlr I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f f x f x = 0
65 28 3adantl3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f x
66 65 recnd I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f x
67 66 66 mul0ord I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f x f x = 0 f x = 0 f x = 0
68 67 adantr I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f f x f x = 0 f x = 0 f x = 0
69 64 68 mpbid I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f f x = 0 f x = 0
70 oridm f x = 0 f x = 0 f x = 0
71 69 70 sylib I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f f x = 0
72 30 3adant3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f × f f : I
73 72 adantr I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f : I
74 ssidd I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f supp 0 f × f f supp 0
75 simpl1 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I I V
76 0red I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I 0
77 73 74 75 76 suppssr I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x I supp 0 f × f f f × f f x = 0
78 47 3adantl3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f x = f x f x
79 78 eqeq1d I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f x = 0 f x f x = 0
80 79 67 bitrd I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f x = 0 f x = 0 f x = 0
81 80 70 syl6bb I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f x = 0 f x = 0
82 81 biimpa I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f × f f x = 0 f x = 0
83 77 82 syldan I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x I supp 0 f × f f f x = 0
84 undif f × f f supp 0 I supp 0 f × f f I supp 0 f × f f = I
85 45 84 sylib I V f Base fld freeLMod I supp 0 f × f f I supp 0 f × f f = I
86 85 eleq2d I V f Base fld freeLMod I x supp 0 f × f f I supp 0 f × f f x I
87 86 3adant3 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x supp 0 f × f f I supp 0 f × f f x I
88 87 biimpar I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f I supp 0 f × f f
89 elun x supp 0 f × f f I supp 0 f × f f x supp 0 f × f f x I supp 0 f × f f
90 88 89 sylib I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I x supp 0 f × f f x I supp 0 f × f f
91 71 83 90 mpjaodan I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f x = 0
92 91 ralrimiva I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 x I f x = 0
93 fconstfv f : I 0 f Fn I x I f x = 0
94 c0ex 0 V
95 94 fconst2 f : I 0 f = I × 0
96 93 95 sylbb1 f Fn I x I f x = 0 f = I × 0
97 19 92 96 syl2anc I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f = I × 0
98 isfld fld Field fld DivRing fld CRing
99 14 98 mpbi fld DivRing fld CRing
100 99 simpli fld DivRing
101 drngring fld DivRing fld Ring
102 100 101 ax-mp fld Ring
103 7 12 frlm0 fld Ring I V I × 0 = 0 fld freeLMod I
104 102 103 mpan I V I × 0 = 0 fld freeLMod I
105 16 104 syl5reqr I V 0 fld freeLMod I = x I 0
106 105 3ad2ant1 I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 0 fld freeLMod I = x I 0
107 16 97 106 3eqtr4a I V f Base fld freeLMod I f 𝑖 fld freeLMod I f = 0 f = 0 fld freeLMod I
108 cjre x x = x
109 108 adantl I V x x = x
110 id I V I V
111 7 8 9 5 10 11 12 13 15 107 109 110 frlmphl I V fld freeLMod I PreHil
112 df-refld fld = fld 𝑠
113 7 frlmsca fld Field I V fld = Scalar fld freeLMod I
114 14 113 mpan I V fld = Scalar fld freeLMod I
115 112 114 syl5reqr I V Scalar fld freeLMod I = fld 𝑠
116 simpr1 I V f f 0 f f
117 simpr3 I V f f 0 f 0 f
118 116 117 resqrtcld I V f f 0 f f
119 56 57 59 fsumge0 I V f Base fld freeLMod I 0 x f × f f supp 0 f x f x
120 119 50 breqtrrd I V f Base fld freeLMod I 0 fld f × f f
121 120 24 breqtrrd I V f Base fld freeLMod I 0 f 𝑖 fld freeLMod I f
122 4 5 6 111 115 10 118 121 tcphcph I V toCPreHil fld freeLMod I CPreHil
123 3 122 eqeltrd I V H CPreHil