Metamath Proof Explorer


Theorem ofval

Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses offval.1 φ F Fn A
offval.2 φ G Fn B
offval.3 φ A V
offval.4 φ B W
offval.5 A B = S
ofval.6 φ X A F X = C
ofval.7 φ X B G X = D
Assertion ofval φ X S F R f G X = C R D

Proof

Step Hyp Ref Expression
1 offval.1 φ F Fn A
2 offval.2 φ G Fn B
3 offval.3 φ A V
4 offval.4 φ B W
5 offval.5 A B = S
6 ofval.6 φ X A F X = C
7 ofval.7 φ X B G X = D
8 eqidd φ x A F x = F x
9 eqidd φ x B G x = G x
10 1 2 3 4 5 8 9 offval φ F R f G = x S F x R G x
11 10 fveq1d φ F R f G X = x S F x R G x X
12 11 adantr φ X S F R f G X = x S F x R G x X
13 fveq2 x = X F x = F X
14 fveq2 x = X G x = G X
15 13 14 oveq12d x = X F x R G x = F X R G X
16 eqid x S F x R G x = x S F x R G x
17 ovex F X R G X V
18 15 16 17 fvmpt X S x S F x R G x X = F X R G X
19 18 adantl φ X S x S F x R G x X = F X R G X
20 inss1 A B A
21 5 20 eqsstrri S A
22 21 sseli X S X A
23 22 6 sylan2 φ X S F X = C
24 inss2 A B B
25 5 24 eqsstrri S B
26 25 sseli X S X B
27 26 7 sylan2 φ X S G X = D
28 23 27 oveq12d φ X S F X R G X = C R D
29 12 19 28 3eqtrd φ X S F R f G X = C R D