Step |
Hyp |
Ref |
Expression |
1 |
|
offval.1 |
|- ( ph -> F Fn A ) |
2 |
|
offval.2 |
|- ( ph -> G Fn B ) |
3 |
|
offval.3 |
|- ( ph -> A e. V ) |
4 |
|
offval.4 |
|- ( ph -> B e. W ) |
5 |
|
offval.5 |
|- ( A i^i B ) = S |
6 |
|
ofval.6 |
|- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
7 |
|
ofval.7 |
|- ( ( ph /\ X e. B ) -> ( G ` X ) = D ) |
8 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
9 |
|
eqidd |
|- ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) ) |
10 |
1 2 3 4 5 8 9
|
offval |
|- ( ph -> ( F oF R G ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
11 |
10
|
fveq1d |
|- ( ph -> ( ( F oF R G ) ` X ) = ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ X e. S ) -> ( ( F oF R G ) ` X ) = ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) ) |
13 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
14 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
15 |
13 14
|
oveq12d |
|- ( x = X -> ( ( F ` x ) R ( G ` x ) ) = ( ( F ` X ) R ( G ` X ) ) ) |
16 |
|
eqid |
|- ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) |
17 |
|
ovex |
|- ( ( F ` X ) R ( G ` X ) ) e. _V |
18 |
15 16 17
|
fvmpt |
|- ( X e. S -> ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) = ( ( F ` X ) R ( G ` X ) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ X e. S ) -> ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) = ( ( F ` X ) R ( G ` X ) ) ) |
20 |
|
inss1 |
|- ( A i^i B ) C_ A |
21 |
5 20
|
eqsstrri |
|- S C_ A |
22 |
21
|
sseli |
|- ( X e. S -> X e. A ) |
23 |
22 6
|
sylan2 |
|- ( ( ph /\ X e. S ) -> ( F ` X ) = C ) |
24 |
|
inss2 |
|- ( A i^i B ) C_ B |
25 |
5 24
|
eqsstrri |
|- S C_ B |
26 |
25
|
sseli |
|- ( X e. S -> X e. B ) |
27 |
26 7
|
sylan2 |
|- ( ( ph /\ X e. S ) -> ( G ` X ) = D ) |
28 |
23 27
|
oveq12d |
|- ( ( ph /\ X e. S ) -> ( ( F ` X ) R ( G ` X ) ) = ( C R D ) ) |
29 |
12 19 28
|
3eqtrd |
|- ( ( ph /\ X e. S ) -> ( ( F oF R G ) ` X ) = ( C R D ) ) |