Metamath Proof Explorer


Theorem ofrval

Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1
|- ( ph -> F Fn A )
offval.2
|- ( ph -> G Fn B )
offval.3
|- ( ph -> A e. V )
offval.4
|- ( ph -> B e. W )
offval.5
|- ( A i^i B ) = S
ofval.6
|- ( ( ph /\ X e. A ) -> ( F ` X ) = C )
ofval.7
|- ( ( ph /\ X e. B ) -> ( G ` X ) = D )
Assertion ofrval
|- ( ( ph /\ F oR R G /\ X e. S ) -> C R D )

Proof

Step Hyp Ref Expression
1 offval.1
 |-  ( ph -> F Fn A )
2 offval.2
 |-  ( ph -> G Fn B )
3 offval.3
 |-  ( ph -> A e. V )
4 offval.4
 |-  ( ph -> B e. W )
5 offval.5
 |-  ( A i^i B ) = S
6 ofval.6
 |-  ( ( ph /\ X e. A ) -> ( F ` X ) = C )
7 ofval.7
 |-  ( ( ph /\ X e. B ) -> ( G ` X ) = D )
8 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
9 eqidd
 |-  ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) )
10 1 2 3 4 5 8 9 ofrfval
 |-  ( ph -> ( F oR R G <-> A. x e. S ( F ` x ) R ( G ` x ) ) )
11 10 biimpa
 |-  ( ( ph /\ F oR R G ) -> A. x e. S ( F ` x ) R ( G ` x ) )
12 fveq2
 |-  ( x = X -> ( F ` x ) = ( F ` X ) )
13 fveq2
 |-  ( x = X -> ( G ` x ) = ( G ` X ) )
14 12 13 breq12d
 |-  ( x = X -> ( ( F ` x ) R ( G ` x ) <-> ( F ` X ) R ( G ` X ) ) )
15 14 rspccv
 |-  ( A. x e. S ( F ` x ) R ( G ` x ) -> ( X e. S -> ( F ` X ) R ( G ` X ) ) )
16 11 15 syl
 |-  ( ( ph /\ F oR R G ) -> ( X e. S -> ( F ` X ) R ( G ` X ) ) )
17 16 3impia
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> ( F ` X ) R ( G ` X ) )
18 simp1
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> ph )
19 inss1
 |-  ( A i^i B ) C_ A
20 5 19 eqsstrri
 |-  S C_ A
21 simp3
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> X e. S )
22 20 21 sseldi
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> X e. A )
23 18 22 6 syl2anc
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> ( F ` X ) = C )
24 inss2
 |-  ( A i^i B ) C_ B
25 5 24 eqsstrri
 |-  S C_ B
26 25 21 sseldi
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> X e. B )
27 18 26 7 syl2anc
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> ( G ` X ) = D )
28 17 23 27 3brtr3d
 |-  ( ( ph /\ F oR R G /\ X e. S ) -> C R D )