Metamath Proof Explorer


Theorem ofrval

Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1 φFFnA
offval.2 φGFnB
offval.3 φAV
offval.4 φBW
offval.5 AB=S
ofval.6 φXAFX=C
ofval.7 φXBGX=D
Assertion ofrval φFRfGXSCRD

Proof

Step Hyp Ref Expression
1 offval.1 φFFnA
2 offval.2 φGFnB
3 offval.3 φAV
4 offval.4 φBW
5 offval.5 AB=S
6 ofval.6 φXAFX=C
7 ofval.7 φXBGX=D
8 eqidd φxAFx=Fx
9 eqidd φxBGx=Gx
10 1 2 3 4 5 8 9 ofrfval φFRfGxSFxRGx
11 10 biimpa φFRfGxSFxRGx
12 fveq2 x=XFx=FX
13 fveq2 x=XGx=GX
14 12 13 breq12d x=XFxRGxFXRGX
15 14 rspccv xSFxRGxXSFXRGX
16 11 15 syl φFRfGXSFXRGX
17 16 3impia φFRfGXSFXRGX
18 simp1 φFRfGXSφ
19 inss1 ABA
20 5 19 eqsstrri SA
21 simp3 φFRfGXSXS
22 20 21 sselid φFRfGXSXA
23 18 22 6 syl2anc φFRfGXSFX=C
24 inss2 ABB
25 5 24 eqsstrri SB
26 25 21 sselid φFRfGXSXB
27 18 26 7 syl2anc φFRfGXSGX=D
28 17 23 27 3brtr3d φFRfGXSCRD