Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | offval.1 | |
|
offval.2 | |
||
offval.3 | |
||
offval.4 | |
||
offval.5 | |
||
ofval.6 | |
||
ofval.7 | |
||
Assertion | ofrval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | |
|
2 | offval.2 | |
|
3 | offval.3 | |
|
4 | offval.4 | |
|
5 | offval.5 | |
|
6 | ofval.6 | |
|
7 | ofval.7 | |
|
8 | eqidd | |
|
9 | eqidd | |
|
10 | 1 2 3 4 5 8 9 | ofrfval | |
11 | 10 | biimpa | |
12 | fveq2 | |
|
13 | fveq2 | |
|
14 | 12 13 | breq12d | |
15 | 14 | rspccv | |
16 | 11 15 | syl | |
17 | 16 | 3impia | |
18 | simp1 | |
|
19 | inss1 | |
|
20 | 5 19 | eqsstrri | |
21 | simp3 | |
|
22 | 20 21 | sselid | |
23 | 18 22 6 | syl2anc | |
24 | inss2 | |
|
25 | 5 24 | eqsstrri | |
26 | 25 21 | sselid | |
27 | 18 26 7 | syl2anc | |
28 | 17 23 27 | 3brtr3d | |