Metamath Proof Explorer


Definition df-ofr

Description: Define the function relation map. The definition is designed so that if R is a binary relation, then oR R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion df-ofr rR=fg|xdomfdomgfxRgx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 cofr classrR
2 vf setvarf
3 vg setvarg
4 vx setvarx
5 2 cv setvarf
6 5 cdm classdomf
7 3 cv setvarg
8 7 cdm classdomg
9 6 8 cin classdomfdomg
10 4 cv setvarx
11 10 5 cfv classfx
12 10 7 cfv classgx
13 11 12 0 wbr wfffxRgx
14 13 4 9 wral wffxdomfdomgfxRgx
15 14 2 3 copab classfg|xdomfdomgfxRgx
16 1 15 wceq wffrR=fg|xdomfdomgfxRgx