Metamath Proof Explorer


Theorem ofeqd

Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024)

Ref Expression
Hypothesis ofeqd.1 φR=S
Assertion ofeqd φfR=fS

Proof

Step Hyp Ref Expression
1 ofeqd.1 φR=S
2 1 oveqd φfxRgx=fxSgx
3 2 mpteq2dv φxdomfdomgfxRgx=xdomfdomgfxSgx
4 3 mpoeq3dv φfV,gVxdomfdomgfxRgx=fV,gVxdomfdomgfxSgx
5 df-of fR=fV,gVxdomfdomgfxRgx
6 df-of fS=fV,gVxdomfdomgfxSgx
7 4 5 6 3eqtr4g φfR=fS