Metamath Proof Explorer


Theorem ofeqd

Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024)

Ref Expression
Hypothesis ofeqd.1 φ R = S
Assertion ofeqd φ f R = f S

Proof

Step Hyp Ref Expression
1 ofeqd.1 φ R = S
2 1 oveqd φ f x R g x = f x S g x
3 2 mpteq2dv φ x dom f dom g f x R g x = x dom f dom g f x S g x
4 3 mpoeq3dv φ f V , g V x dom f dom g f x R g x = f V , g V x dom f dom g f x S g x
5 df-of f R = f V , g V x dom f dom g f x R g x
6 df-of f S = f V , g V x dom f dom g f x S g x
7 4 5 6 3eqtr4g φ f R = f S