Step |
Hyp |
Ref |
Expression |
1 |
|
ofeqd.1 |
|- ( ph -> R = S ) |
2 |
1
|
oveqd |
|- ( ph -> ( ( f ` x ) R ( g ` x ) ) = ( ( f ` x ) S ( g ` x ) ) ) |
3 |
2
|
mpteq2dv |
|- ( ph -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) |
4 |
3
|
mpoeq3dv |
|- ( ph -> ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) ) |
5 |
|
df-of |
|- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
6 |
|
df-of |
|- oF S = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) |
7 |
4 5 6
|
3eqtr4g |
|- ( ph -> oF R = oF S ) |