Metamath Proof Explorer


Theorem frlmsca

Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis frlmval.f F=RfreeLModI
Assertion frlmsca RVIWR=ScalarF

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 fvex ringLModRV
3 eqid ringLModR𝑠I=ringLModR𝑠I
4 eqid ScalarringLModR=ScalarringLModR
5 3 4 pwssca ringLModRVIWScalarringLModR=ScalarringLModR𝑠I
6 2 5 mpan IWScalarringLModR=ScalarringLModR𝑠I
7 6 adantl RVIWScalarringLModR=ScalarringLModR𝑠I
8 fvex BaseFV
9 eqid ringLModR𝑠I𝑠BaseF=ringLModR𝑠I𝑠BaseF
10 eqid ScalarringLModR𝑠I=ScalarringLModR𝑠I
11 9 10 resssca BaseFVScalarringLModR𝑠I=ScalarringLModR𝑠I𝑠BaseF
12 8 11 ax-mp ScalarringLModR𝑠I=ScalarringLModR𝑠I𝑠BaseF
13 7 12 eqtrdi RVIWScalarringLModR=ScalarringLModR𝑠I𝑠BaseF
14 rlmsca RVR=ScalarringLModR
15 14 adantr RVIWR=ScalarringLModR
16 eqid BaseF=BaseF
17 1 16 frlmpws RVIWF=ringLModR𝑠I𝑠BaseF
18 17 fveq2d RVIWScalarF=ScalarringLModR𝑠I𝑠BaseF
19 13 15 18 3eqtr4d RVIWR=ScalarF