| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfldbas |  | 
						
							| 2 |  | cnfld0 |  | 
						
							| 3 |  | cnring |  | 
						
							| 4 |  | ringcmn |  | 
						
							| 5 | 3 4 | mp1i |  | 
						
							| 6 |  | simp3 |  | 
						
							| 7 |  | simp1 |  | 
						
							| 8 |  | ax-resscn |  | 
						
							| 9 |  | fss |  | 
						
							| 10 | 7 8 9 | sylancl |  | 
						
							| 11 |  | ssidd |  | 
						
							| 12 |  | simp2 |  | 
						
							| 13 | 1 2 5 6 10 11 12 | gsumres |  | 
						
							| 14 |  | cnfldadd |  | 
						
							| 15 |  | df-refld |  | 
						
							| 16 | 8 | a1i |  | 
						
							| 17 |  | 0red |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | addlidd |  | 
						
							| 20 | 18 | addridd |  | 
						
							| 21 | 19 20 | jca |  | 
						
							| 22 | 1 14 15 5 6 16 7 17 21 | gsumress |  | 
						
							| 23 | 13 22 | eqtr2d |  | 
						
							| 24 |  | suppssdm |  | 
						
							| 25 | 24 7 | fssdm |  | 
						
							| 26 | 7 25 | feqresmpt |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 12 | fsuppimpd |  | 
						
							| 29 |  | simpl1 |  | 
						
							| 30 | 25 | sselda |  | 
						
							| 31 | 29 30 | ffvelcdmd |  | 
						
							| 32 | 8 31 | sselid |  | 
						
							| 33 | 28 32 | gsumfsum |  | 
						
							| 34 | 23 27 33 | 3eqtrd |  |