Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019) (Proof shortened by AV, 19-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | regsumsupp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas | |
|
2 | cnfld0 | |
|
3 | cnring | |
|
4 | ringcmn | |
|
5 | 3 4 | mp1i | |
6 | simp3 | |
|
7 | simp1 | |
|
8 | ax-resscn | |
|
9 | fss | |
|
10 | 7 8 9 | sylancl | |
11 | ssidd | |
|
12 | simp2 | |
|
13 | 1 2 5 6 10 11 12 | gsumres | |
14 | cnfldadd | |
|
15 | df-refld | |
|
16 | 8 | a1i | |
17 | 0red | |
|
18 | simpr | |
|
19 | 18 | addlidd | |
20 | 18 | addridd | |
21 | 19 20 | jca | |
22 | 1 14 15 5 6 16 7 17 21 | gsumress | |
23 | 13 22 | eqtr2d | |
24 | suppssdm | |
|
25 | 24 7 | fssdm | |
26 | 7 25 | feqresmpt | |
27 | 26 | oveq2d | |
28 | 12 | fsuppimpd | |
29 | simpl1 | |
|
30 | 25 | sselda | |
31 | 29 30 | ffvelcdmd | |
32 | 8 31 | sselid | |
33 | 28 32 | gsumfsum | |
34 | 23 27 33 | 3eqtrd | |