Metamath Proof Explorer


Theorem regsumsupp

Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019) (Proof shortened by AV, 19-Jul-2019)

Ref Expression
Assertion regsumsupp F:IfinSupp0FIVfldF=xFsupp0Fx

Proof

Step Hyp Ref Expression
1 cnfldbas =Basefld
2 cnfld0 0=0fld
3 cnring fldRing
4 ringcmn fldRingfldCMnd
5 3 4 mp1i F:IfinSupp0FIVfldCMnd
6 simp3 F:IfinSupp0FIVIV
7 simp1 F:IfinSupp0FIVF:I
8 ax-resscn
9 fss F:IF:I
10 7 8 9 sylancl F:IfinSupp0FIVF:I
11 ssidd F:IfinSupp0FIVFsupp0Fsupp0
12 simp2 F:IfinSupp0FIVfinSupp0F
13 1 2 5 6 10 11 12 gsumres F:IfinSupp0FIVfldFsupp0F=fldF
14 cnfldadd +=+fld
15 df-refld fld=fld𝑠
16 8 a1i F:IfinSupp0FIV
17 0red F:IfinSupp0FIV0
18 simpr F:IfinSupp0FIVxx
19 18 addlidd F:IfinSupp0FIVx0+x=x
20 18 addridd F:IfinSupp0FIVxx+0=x
21 19 20 jca F:IfinSupp0FIVx0+x=xx+0=x
22 1 14 15 5 6 16 7 17 21 gsumress F:IfinSupp0FIVfldF=fldF
23 13 22 eqtr2d F:IfinSupp0FIVfldF=fldFsupp0F
24 suppssdm Fsupp0domF
25 24 7 fssdm F:IfinSupp0FIVFsupp0I
26 7 25 feqresmpt F:IfinSupp0FIVFsupp0F=xsupp0FFx
27 26 oveq2d F:IfinSupp0FIVfldFsupp0F=fldxFsupp0Fx
28 12 fsuppimpd F:IfinSupp0FIVFsupp0Fin
29 simpl1 F:IfinSupp0FIVxsupp0FF:I
30 25 sselda F:IfinSupp0FIVxsupp0FxI
31 29 30 ffvelcdmd F:IfinSupp0FIVxsupp0FFx
32 8 31 sselid F:IfinSupp0FIVxsupp0FFx
33 28 32 gsumfsum F:IfinSupp0FIVfldxFsupp0Fx=xFsupp0Fx
34 23 27 33 3eqtrd F:IfinSupp0FIVfldF=xFsupp0Fx